

Project 101.01007.002

September 30, 2014

Mr. David McKinley Kaestle Boos Associates, Inc. 325 Foxborough Boulevard, Suite 100 Foxborough, Massachusetts 02035

RE: Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

Dear Mr. McKinley:

Ransom Consulting, Inc. (Ransom) has prepared this letter for Kaestle Boos Associates, Inc. (KBA) summarizing the results of a Phase II Limited Subsurface Investigation (LSI) performed at the above-referenced property in Lexington and Lincoln, Massachusetts (the Site). The objective of this investigation was to determine if a release of petroleum to the environment occurred at the Site and to evaluate environmental conditions at the Site with respect to the requirements of the Massachusetts Contingency Plan (MCP). This work was performed as a follow-up to the Phase I Environmental Site Assessment (ESA) completed at the Site by Ransom in June 2014. A Site Location Map, Site Area Plan and a Site Plan are provided as Figures 1, 2, and 3, respectively.

EXECUTIVE SUMMARY

Ransom completed a Phase I ESA at the Site in June 2014. Although Ransom did not identify a release of oil and/or hazardous material (OHM) at the Site, based on the information obtained during the ESA, Ransom identified three recognized environmental conditions (RECs):

- 1. Possible releases of petroleum from a former 5,000-gallon gasoline tank and associated pump island and underground piping. The tank was installed in a concrete vault located east and northeast of the high school building. The tank was removed in 1998. No documentation was available for review describing the integrity of the tank and associated piping and soil conditions at the time the tank was removed.
- 2. Possible releases of petroleum from a former 1,000-gallon waste-oil underground storage tank (UST) located north of the high school building that was removed in 1999. As with the 1998 gasoline tank system removal, no documentation was available for review describing the integrity of the tank and associated piping and soil conditions at the time the tank was removed.
- 3. Possible releases of hydraulic fluid from former in-ground hydraulic lifts located in the plumbing and automotive portions of the Trades Hall. No documentation was available describing the number, locations, and conditions of the former hydraulic lifts at the Site.

Between September 10 and 17, 2014, Ransom completed an LSI at the Site to address the RECs identified during the Phase I ESA. The LSI included a geophysical survey, the advancement of ten soil borings and the installation of six groundwater monitoring wells, and the collection and chemical analysis of soil and groundwater samples. Based on the results of this investigation, Ransom draws the following conclusions:

- 1. Petroleum-impacted soil and water are present in the containment vault associated with the former 5,000-gallon gasoline tank. Evidence of a release to environment outside of the vault was not observed and it appears that the containment vault is intact.
- 2. Ransom did not identify evidence of a release of petroleum at the location of the former 1,000-gallon waste oil UST. The fill port associated with this former UST remains inside the automotive garage and has been glued shut.
- 3. Based on the results of the geophysical survey and field observations, one in-ground hydraulic lift is located in the plumbing portion of the Trades Hall and six in-ground hydraulic lifts are located in the automotive portion of the Trades Hall. Ransom did not identify evidence of a significant release of hydraulic fluid in the vicinities of the hydraulic lifts.
- 4. A condition requiring Massachusetts Department of Environmental Protection (MA DEP) notification was not identified at the Site.

Based on the results of the LSI, no further assessment is warranted at this time. Ransom recommends the following best management practices to prevent petroleum releases to soil and groundwater at the Site:

- 1. Remove the seven in-ground hydraulic lifts and associated reservoirs and piping.
- 2. Remove the petroleum-impacted soil and water from the containment vault and manage appropriately. Remove the containment vault from the ground and manage appropriately.
- 3. Remove the closed fill port and piping associated with the former 1,000-gallon waste-oil UST.

BACKGROUND

The Site is occupied by the Minuteman Regional Highs School building, an "energy house" (a residential structure used as office space by the Massachusetts Association of School Superintendents), storage buildings, parking areas, athletic fields, wooded land, and ponds and wetlands. The high school building, completed in 1975, includes a vocational "Trades Hall," providing classrooms and work space for the automotive repair, plumbing, welding, carpentry, and HVAC training. The high school building is connected to the Town of Lexington municipal water and sewer systems and is currently heated with natural gas; it was converted from oil heat approximately 10 years ago.

Two 15,000-gallon No.4 fuel oil tanks remain in a concrete vault located southwest of the building. A 1,000-gallon waste oil UST, which was used by the automotive garages at the school building, was

removed in 1999. A 5,000-gallon gasoline tank located in an underground concrete vault and an associated pump island were removed from the Site in 1998. No documentation with respect to the conditions of the former tank systems or the environment at the time these systems were removed was available.

During the site reconnaissance, Ransom identified evidence of former underground lifts in the plumbing and automotive portions of the Trades Hall. It is unclear how many former underground lifts were located in the high school building and whether the hydraulic fluid associated with these lifts has been removed.

Based on the information obtained during the ESA, Ransom identified three RECs in connection with the Site:

- 1. Possible releases of petroleum from a former 5,000-gallon gasoline tank and associated pump island and underground piping. The tank was installed in a concrete vault located east and northeast of the high school building. The tank was removed in 1998. No documentation was available for review describing the integrity of the tank and associated piping and soil conditions at the time the tank was removed.
- 2. Possible releases of petroleum from a former 1,000-gallon waste oil UST located north of the high school building that was removed in 1999. As with the 1998 gasoline tank system removal, no documentation was available for review describing the integrity of the tank and associated piping and soil conditions at the time the tank was removed.
- 3. Possible releases of hydraulic fluid from former in-ground hydraulic lifts located in the plumbing and automotive portions of the Trades Hall. No documentation was available describing the number, locations, and conditions of the former hydraulic lifts at the Site.

Based on the information obtained during the completion of the Phase I ESA, Ransom recommended that a Phase II LSI be completed at the Site to address the three RECs.

LIMITED SUBSURFACE INVESTIGATION

Between September 10 and 17, 2014, Ransom completed an LSI at the Site which included a geophysical survey in portions of the Site building for underground hydraulic lifts, the advancement of ten soil borings and the installation of six groundwater monitoring wells, and the collection and chemical analysis of soil and groundwater samples. Soil boring and groundwater monitoring well locations are provided on Figure 3. A photograph log is provided as Attachment A.

Geophysical Survey

On September 10, 2014, Ransom was on-site with Hager Geoscience, Inc. (HGS) of Woburn, Massachusetts, to complete a geophysical survey in the plumbing and automotive portions of the Trades Hall (northeast corner of building). The survey included the use of ground penetrating radar (GPR) and precision utility locators (PUL) to identify possible underground structures. An approximately 3,500-square-foot area in the automotive area, a 500-square-foot area in the plumbing trade room, and a

500-square-foot area in the safety classroom were surveyed. Based on the geophysical survey and visual observations the following conclusions were made:

- 1. Plumbing Room: The steel plate and piston are visible in the floor of the Plumbing Room. In addition, the piping and controls are visible coming out of the floor at a concrete-block wall west of the lift. The geophysical survey confirmed the presence of one in-ground hydraulic lift.
- 2. Safety Room: The geophysical survey did not identify the presence of in-ground lifts, associated piping, reservoirs or conduits. Newer concrete and sub-base appeared in most of this area. The outline of a presumed former aboveground lift is visible on the surface of the concrete floor.
- 3. Automotive Garage: Concrete patches indicate two single piston lifts, four double piston plate lifts, and a former repair pit in this area. One metal piston is visible in the concrete floor at the northwest potion of the space. The metal outlines of the double piston plate lifts are visible in the concrete floor. The geophysical survey did not identify subsurface disturbances in the vicinity of the lifts, which suggests that the subsurface elements of the lifts remain in place.

A copy of the geophysical survey report is provided as Attachment B.

Soil Boring Advancement, Soil Sampling, and Groundwater Monitoring Well Installation

On September 12 and 13, 2014, Ransom was present at the Site to oversee the advancement of ten soil borings (SB101 through SB110). The drilling was performed by Northern Drill Service (Northern) of Northborough, Massachusetts. The soil borings were advanced using direct-push techniques using a 6620DT Geoprobe rig. Soil samples were field screened for the presence of organic vapors utilizing a photo-ionization detector (PID)-equipped instrument. Monitoring wells were installed in six of the soil borings using 2-inch-diameter factory-slotted PVC well screen and solid riser pipe, and were finished with a flush-mounted road box. Soil boring and monitoring well construction logs are provided as Attachment C

Soil samples collected during the advancement of each soil boring were placed in laboratory-prepared glassware and submitted to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts, for confirmatory chemical analysis.

Groundwater Sampling

On September 17, 2014, Ransom returned to the Site to collect groundwater samples from five of the six recently installed monitoring wells. Monitoring well MW101 was not sampled due to indications that it is located in a containment vault for a former 5,000-gallon gasoline tank. Prior to sample collection, Ransom gauged the depth to groundwater in each well. Following the gauging, Ransom purged and sampled the wells using low-flow methods (pumping rate of less than 0.5 liter per minute). During well purging, the purged groundwater was passed through the flow cell of a Quanta Hydrolab unit, which continuously monitored specific conductivity, oxidation-reduction potential (ORP), dissolved oxygen

(DO), pH, and temperature. Groundwater was purged until the field parameters listed below had stabilized to within the ranges presented:

Field Parameter	Stabilization Criteria		
Specific Conductivity	3% of range		
Oxidation-Reduction Potential	10.0 millivolts		
Dissolved Oxygen	10% of range		
pH	0.10 Standard pH Units		
Temperature	0.2°C		

Samples were dispensed into laboratory-prepared glassware, and stored on ice in a cooler. The groundwater samples were submitted to Alpha for confirmatory chemical analysis.

A summary of exploration locations and sampling/analysis rationale for the Phase II LSI is presented in the table below.

Boring & Monitoring Well IDs	Approx. Depth of Boring (feet bgs)	Purpose/Rationale	Soil Sample Chemical Analyses	Groundwater Sample Chemical Analyses
SB101/ MW101	9 (refusal)	Located in the anticipated location of the former 5,000-gallon gasoline tank. Oily sheens were observed in soil samples collected at depths between 4 and 9 feet bgs. Organic vapors were detected at concentrations of up to 3,095 parts per million by volume (ppmv). Ransom suspects that this boring and monitoring well were installed in a concrete containment vault.	Field screening	
SB102	15	Advanced between the former 5,000-gallon gasoline tank and the associated former gasoline pump island.	Field screening, VPH, EPH	EPH and VPH
SB103/ MW106	15	Advanced downgradient of the former gasoline pump island. Organic vapors were detected at concentrations of up to 4.2 ppmv.	Field screening, EPH, VPH	EPH and VPH
SB104	10	Advanced directly adjacent to the containment vault associated with the former 5,000-gallon gasoline tank. No evidence of petroleum impacts (no staining or odors). Organic vapors were not detected in soil samples at concentrations above 1 ppmv.	Field screening, EPH, VPH	

Boring & Monitoring Well IDs	Approx. Depth of Boring (feet bgs)	Purpose/Rationale	Soil Sample Chemical Analyses	Groundwater Sample Chemical Analyses
SB105/ MW102	15	Advanced adjacent to the northwest corner of the garage, near the location of the former 1,000-gallon waste oil UST, and in close proximity to a former hydraulic lift located inside the garage. Organic vapors were not detected in at concentrations above 1 ppmv.	Field screening, EPH, VPH and PCBs	EPH and VPH
SB106	15	Advanced in the garage, in the vicinity of in-ground hydraulic vehicle lifts.	Field screening, EPH, and PCBs	
SB107/ MW103	15	Advanced in the automotive tech garage, in the vicinity of in-ground hydraulic vehicle lifts.	Field screening, EPH and PCBs	EPH and VPH
SB108	15	Advanced in the automotive garage, in the vicinity of in-ground hydraulic vehicle lifts.	Field screening, EPH and PCBs	
SB109/ MW104	15	Advanced adjacent to a former in-ground hydraulic lift in the plumbing trade hall.	Field screening, EPH and PCBs	EPH and VPH
SB110/ MW105	15	Advanced adjacent to the containment vault associated with the former 5,000-gallon gasoline tank. No evidence of petroleum impacts (no staining or odors). Organic vapors were not detected in soil samples at concentrations above 1 ppmv	Field screening, EPH, and VPH	EPH and VPH

NOTES:

- 1. Each soil sample was field screened for the presence of organic vapors using a PID-equipped instrument.
- 2. bgs = below the ground surface.
- 3. EPH = extractable petroleum hydrocarbons, excluding the target polycyclic aromatic hydrocarbons (PAHs), by the MA DEP Method; VPH = volatile petroleum hydrocarbons including the target volatile organic compounds, by the MA DEP Method; PCBs = polychlorinated biphenyls by U.S. EPA Method 8082.

Groundwater Elevation Survey

On September 17, 2014, Ransom surveyed the elevations and locations of the monitoring wells and collected depth to groundwater data from the monitoring wells. Elevations are relative to a benchmark assigned an arbitrary elevation of 100.00 feet set on the top bolt of fire hydrant located north of the automotive garage. Groundwater elevation survey data is provided in Table 1.

RESULTS

Groundwater Flow Direction

Based on local topography, regional groundwater at the entire Site is presumed to flow in a southwest direction. However, groundwater elevation data indicate that in the area of the Site which was assessed groundwater flows northerly, toward a small unnamed wetland area which abuts the Site.

Analytical Results

The results of the soil and groundwater sample chemical analyses are described below. Soil and groundwater sample chemical analysis results are provided in Tables 2 and 3, respectively. Copies of the laboratory chemical analysis data reports are provided as Attachment D.

Soil

As shown in Table 2, C_{19} – C_{36} aliphatics and C_{11} – C_{22} aromatics were detected in the soil sample collected from soil boring SB103 at a concentration of 52.7 and 53.6 milligrams per kilogram (mg/kg), respectively. C_{11} – C_{22} Aromatics were detected in soil samples collected from soil borings SB104 and SB110 at a concentration of 45.6 and 14.2 mg/kg, respectively. EPH fractions were not detected in soil samples collected from SB105, SB106, SB107, SB108, and SB109 at concentrations above the laboratory reporting limits.

As shown in Table 2, VPH fractions and the target VOCs were not detected in the soil samples collected from soil borings SB103, SB104, SB105, and SB110 at concentrations above the laboratory reporting limits.

As shown in Table 2, PCBs were not detected in the soil samples collected from borings SB105, SB106, SB107, SB108, and SB109 at concentrations above the laboratory reporting limits.

Groundwater

As shown in Table 3, EPH fractions and VPH fractions were not detected in the groundwater samples at concentrations above the laboratory reporting limits.

The target VOCs, benzene, ethylbenzene, and xylenes were detected in the groundwater sample collected from monitoring well MW106 at concentrations of 21.9, 3.12, and 15.41 micrograms per liter (μ g/l), respectively.

REGULATORY STATUS

Ransom compared soil and groundwater contaminant concentrations to their corresponding Reportable Concentrations (RCs) as provided in the MCP, specifically 310 CMR 40.1600, to determine whether a 120-day MA DEP reporting obligation exists at the Site.

Evaluation of MA DEP Reporting Obligation for Soil and Groundwater

Selection of Soil and Groundwater Reporting Categories

The designation of the appropriate soil and groundwater reporting categories are based on site conditions (e.g., distance to residential properties and water resources). Once the soil and groundwater reporting categories are determined, the concentrations of contaminants detected at the Site are then compared to their corresponding RCs to determine whether a 120-day MA DEP reporting condition exists at the Site, as provided by 310 CMR 40.0315.

Since the Site is used as a school, reporting category RCS-1 applies to soil at the Site. Because the Site is not located within an area classified as a Current or Potential Drinking Water Source Area (see MassGIS map in Attachment E), reporting category RCGW-2 applies to groundwater at the Site.

Comparison to Reportable Concentrations for Soil

As shown in Table 2, no contaminants were detected at concentrations exceeding their corresponding RCS-1 RCs in the soil samples collected at the Site during the LSI.

Comparison to Reportable Concentrations for Groundwater

As shown in Table 3, no contaminants were detected at concentrations exceeding the corresponding RCGW-2 RCs in the groundwater samples collected at the Site during the LSI.

MA DEP Reporting Condition

To summarize, no contaminants were detected in soil or groundwater samples collected at the Site that exceeded their respective RCS-1 or RCGW-2 RCs; therefore, a MA DEP notification obligation does not exist at the Site.

CONCLUSIONS

Based on the results of this investigation, Ransom draws the following conclusions:

1. Petroleum-impacted soil and water are present in the containment vault associated with the former 5,000-gallon gasoline tank. Evidence of a release to environment outside of the vault was not observed and it appears that the containment vault is intact.

- 2. Ransom did not identify evidence of a release of petroleum at the location of the former 1,000-gallon waste oil UST. The fill port associated with this former UST remains inside the automotive garage and has been glued shut.
- 3. Based on the results of the geophysical survey and field observations, one in-ground hydraulic lift is located in the plumbing portion of the Trades Hall and six in-ground hydraulic lifts are located in the automotive portion of the Trades Hall. Ransom did not identify evidence of a significant release of hydraulic fluid in the vicinities of the hydraulic lifts.
- 4. A condition requiring MA DEP notification was not identified at the Site.

RECOMMENDATIONS

Based on the results of the LSI, no further assessment is warranted at this time. Ransom recommends the following best management practices to prevent petroleum releases to soil and groundwater at the Site:

- 1. Remove the seven in-ground hydraulic lifts and associated reservoirs and piping.
- 2. Remove the petroleum-impacted soil and water from the containment vault and manage appropriately. Remove the containment vault from the ground and manage appropriately.
- 3. Remove the closed fill port and piping associated with the former 1,000-gallon waste oil UST.

Should you have any questions regarding this letter, please do not hesitate to call.

Sincerely,

RANSOM CONSULTING, INC.

Heather E. Dudley-Tatman, P.G. Project Manager

Timothy J. Snay, LSP, LEP Vice President

DFM/HED/TJS:sh Attachments

TABLE 1: MONITORING WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATION DATA

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

	Total Well	Screened	Reference Elevation		Depth to Groundwater	Groundwater
	Depth (from ground	Interval (from ground		Ground	From Top of PVC	Elevation
Well Identification	surface)	surface)	Top of PVC	Surface	9/17/14	9/17/14
MW101	9	4–9	96.00	96.28	3.15	92.85
MW102	15	5–15	96.60	96.90	8.79	87.81
MW103	15	5–15	96.68	97.00	9.06	87.62
MW104	15	5–15	96.86	97.20	8.71	88.15
MW105	15	5-15	95.80	96.00	7.95	87.85
MW106	15	5–15	96.18	96.58	8.63	87.55

NOTES:

1. Measurements based on data collected by Ransom Environmental Consultants, Inc., on the dates indicated.

2. Elevations are relative to a benchmark assigned an arbitrary elevation of 100.00 feet set on the top bolt of a fire hydrant.

3. All measurements are in feet.

TABLE 2: SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

Boring Identification	SB103	SB104	SB105	SB106	SB107	SB108	SB109	SB110	МСР
Sample Identification	SB103-S2- 091214	SB104-S2- 091214	SB105-S2- 091214	SB106-S2- 091314	SB107-S2- 091314	SB108-S2- 091314	SB109-S2- 091314	SB110-S2- 091314	Reportable Concentrations
Sample Depth (ft bgs)	5–7	5–8	5–9	5–7.5	7–9.5	7–9	5–8	5–7.5	RCS-1
Extractable Petroleum Hydrocarbons		Concentrations in Milligrams per Kilogram (mg/kg)							
C ₉ –C ₁₈ aliphatics	BRL (6.98)	BRL (6.81)	BRL (6.88)	BRL (7.02)	BRL (6.77)	BRL (7.04)	BRL (6.63)	BRL (7.33)	1,000
C ₁₉ –C ₃₆ aliphatics	52.7	BRL (6.81)	BRL (6.88)	BRL (7.02)	BRL (6.77)	BRL (7.04)	BRL (6.63)	BRL (7.33)	3,000
C ₁₁ –C ₂₂ aromatics	53.6	45.6	BRL (6.88)	BRL (7.02)	BRL (6.77)	BRL (7.04)	BRL (6.63)	14.2	1,000
Volatile Petroleum Hydrocarbons		Concentrations in mg/kg							
C ₅ –C ₈ aliphatics	BRL (3.33)	BRL (2.55)	BRL (2.09)	NA	NA	NA	NA	BRL (2.61)	100
C ₉ –C ₁₂ aliphatics	BRL (3.33)	BRL (2.55)	BRL (2.09)	NA	NA	NA	NA	BRL (2.61)	1,000
C_9-C_{10} aromatics	BRL (3.33)	BRL (2.55)	BRL (2.09)	NA	NA	NA	NA	BRL (2.61)	100
Target Volatile Organic Compounds (VOCs)	Concentrations in mg/kg								
benzene	BRL (0.133)	BRL (0.102)	BRL (0.084)	NA	NA	NA	NA	BRL (0.104)	2
toluene	BRL (0.133)	BRL (0.102)	BRL (0.084)	NA	NA	NA	NA	BRL (0.104)	30
ethylbenzene	BRL (0.133)	BRL (0.102)	BRL (0.084)	NA	NA	NA	NA	BRL (0.104)	40

NOTES:

1. Samples were collected on September 12 and 13, 2014, by Ransom Consulting Inc. and were analyzed by Alpha Analytical, Inc., of Westborough, Massachusetts.

2. BGS = below ground surface.

3. BRL () = below reporting limit indicated in parentheses. NA = not analyzed.

4. MCP Reportable Concentrations taken from 310 CMR 40.1600.

TABLE 2: SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

Boring Identification	SB103	SB104	SB105	SB106	SB107	SB108	SB109	SB110	МСР
Sample Identification	SB103-S2- 091214	SB104-S2- 091214	SB105-S2- 091214	SB106-S2- 091314	SB107-S2- 091314	SB108-S2- 091314	SB109-S2- 091314	SB110-S2- 091314	Reportable Concentrations
Sample Depth (ft bgs)	5–7	5–8	5–9	5–7.5	7–9.5	7–9	5–8	5–7.5	RCS-1
total xylenes	BRL (0.133)	BRL (0.102)	BRL (0.084)	NA	NA	NA	NA	BRL (0.104)	100
methyl tertiary butyl ether	BRL (0.067)	BRL (0.051)	BRL (0.042)	NA	NA	NA	NA	BRL (0.052)	0.1
naphthalene	BRL (0.266)	BRL (0.204)	BRL (0.168)	NA	NA	NA	NA	BRL (0.209)	4
Polychlorinated Biphenyls (PCBs)	Concentrations in mg/kg								
all Aroclors	NA	NA	BRL (0.0343)	BRL (0.0344)	BRL (0.035)	BRL (0.0338)	BRL (0.0331)	NA	1

NOTES:

- 1. Samples were collected on September 12 and 13, 2014, by Ransom Consulting Inc. and were analyzed by Alpha Analytical, Inc., of Westborough, Massachusetts.
- 2. BGS = below ground surface.
- 3. BRL () = below reporting limit indicated in parentheses. NA = not analyzed.
- 4. MCP Reportable Concentrations taken from 310 CMR 40.1600.

TABLE 3: SUMMARY OF GROUNDWATER SAMPLE CHEMICAL ANALYSIS RESULTS

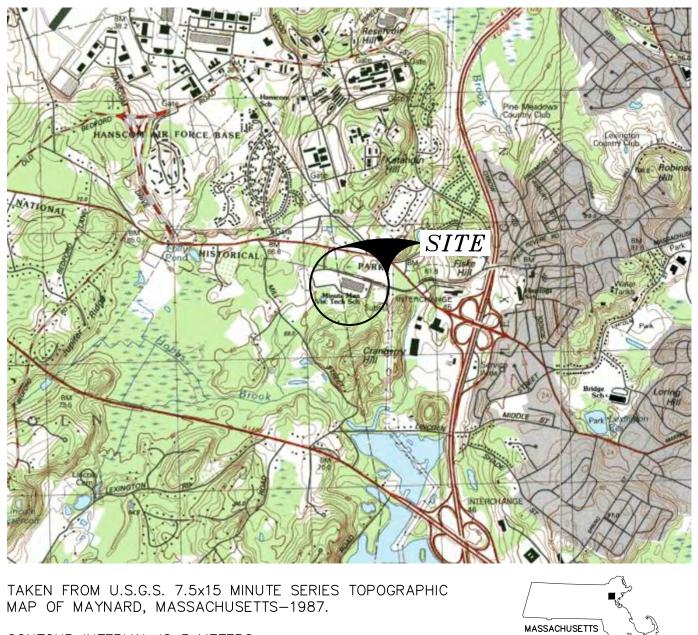
Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

Well Identification	MW102	MW103	MW104	MW105	MW106	MCP Reportable			
Somula Identification	MW102-W1-	MW103-W1-	MW104-W1-	MW105-W1-	MW106-W1-	Concentrations			
Sample Identification	091714	091714	091714	091714	091714	RCGW-2			
Extractable Petroleum Hydrocarbons		Concentrations in Micrograms per Liter (µg/l)							
C ₉ –C ₁₈ aliphatics	BRL (100)	BRL (100)	BRL (100)	BRL (100)	BRL (100)	5,000			
C ₁₉ –C ₃₆ aliphatics	BRL (100)	BRL (100)	BRL (100)	BRL (100)	BRL (100)	50,000			
C ₁₁ –C ₂₂ aromatics	BRL (100)	BRL (100)	BRL (100)	BRL (100)	BRL (100)	5,000			
Volatile Petroleum Hydrocarbons		Concentrations in µg/l							
C ₅ –C ₈ aliphatics	BRL (50)	BRL (50)	BRL (50)	BRL (50)	BRL (50)	3,000			
C ₉ –C ₁₂ aliphatics	BRL (50)	BRL (50)	BRL (50)	BRL (50)	BRL (50)	5,000			
C ₉ –C ₁₀ aromatics	BRL (50)	BRL (50)	BRL (50)	BRL (50)	BRL (50)	4,000			
Target Volatile Organic Compounds (VOCs)		Concentrations in µg/l							
benzene	BRL (2)	BRL (2)	BRL (2)	BRL (2)	21.9	1,000			
toluene	BRL (2)	BRL (2)	BRL (2)	BRL (2)	BRL (2)	40,000			
ethylbenzene	BRL (2)	BRL (2)	BRL (2)	BRL (2)	3.12	5,000			
total xylenes	BRL (2)	BRL (2)	BRL (2)	BRL (2)	15.41	3,000			

NOTES:

1. Samples were collected on September 17, 2014, by Ransom Consulting, Inc., and were analyzed by Alpha Analytical, Inc., of Westborough, Massachusetts.

- 2. BRL () = below reporting limit indicated in parentheses.
- 3. MCP Reportable Concentrations taken from 310 CMR 40.1600.


TABLE 3: SUMMARY OF GROUNDWATER SAMPLE CHEMICAL ANALYSIS RESULTS

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

Well Identification	MW102	MW103	MW104	MW105	MW106	MCP Reportable
Comula Identification	MW102-W1-	MW103-W1-	MW104-W1-	MW105-W1-	MW106-W1-	Concentrations
Sample Identification	091714	091714	091714	091714	091714	RCGW-2
methyl tertiary butyl ether	BRL (3)	5,000				
naphthalene	BRL (4)	1,000				

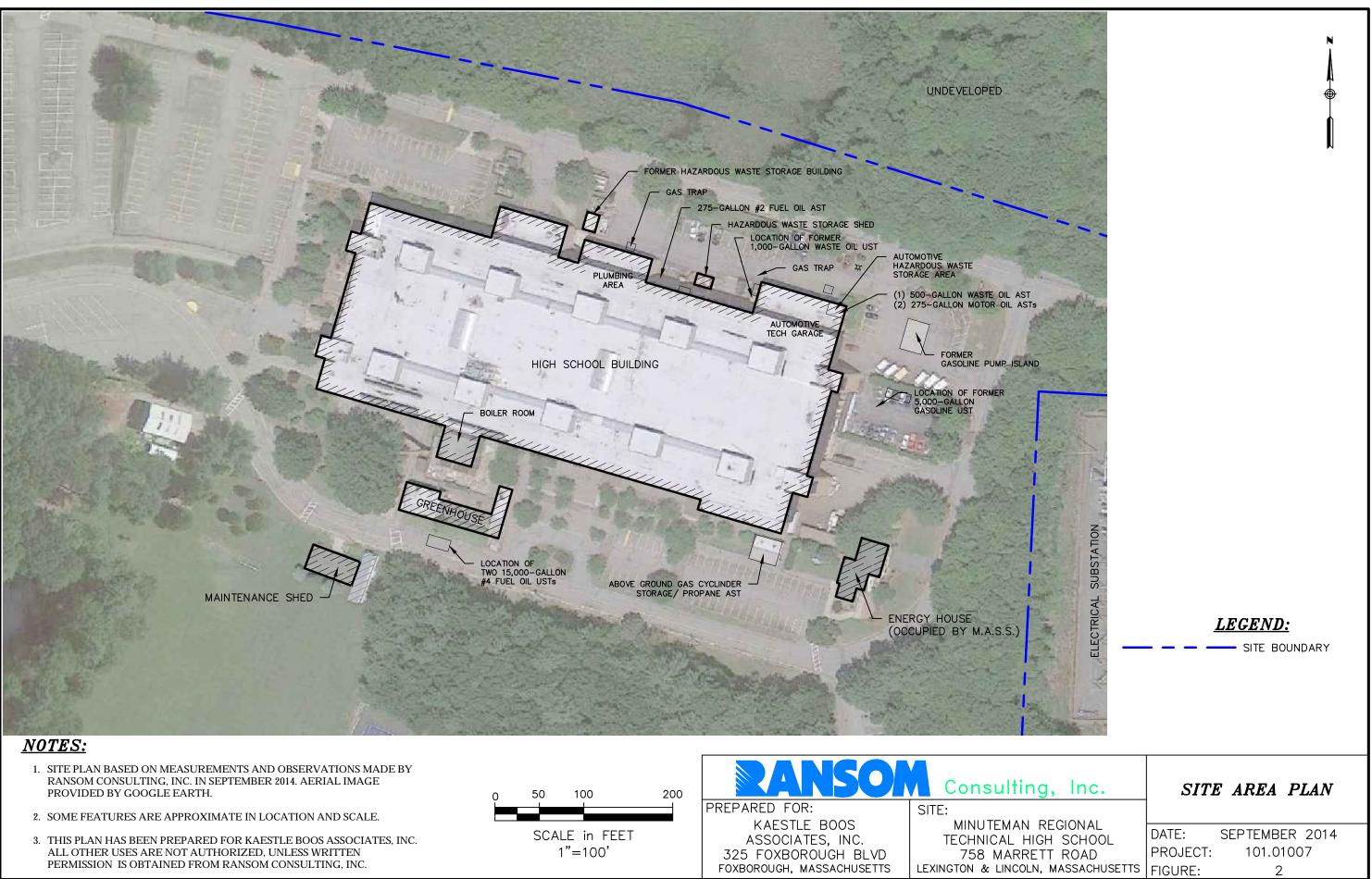
NOTES:

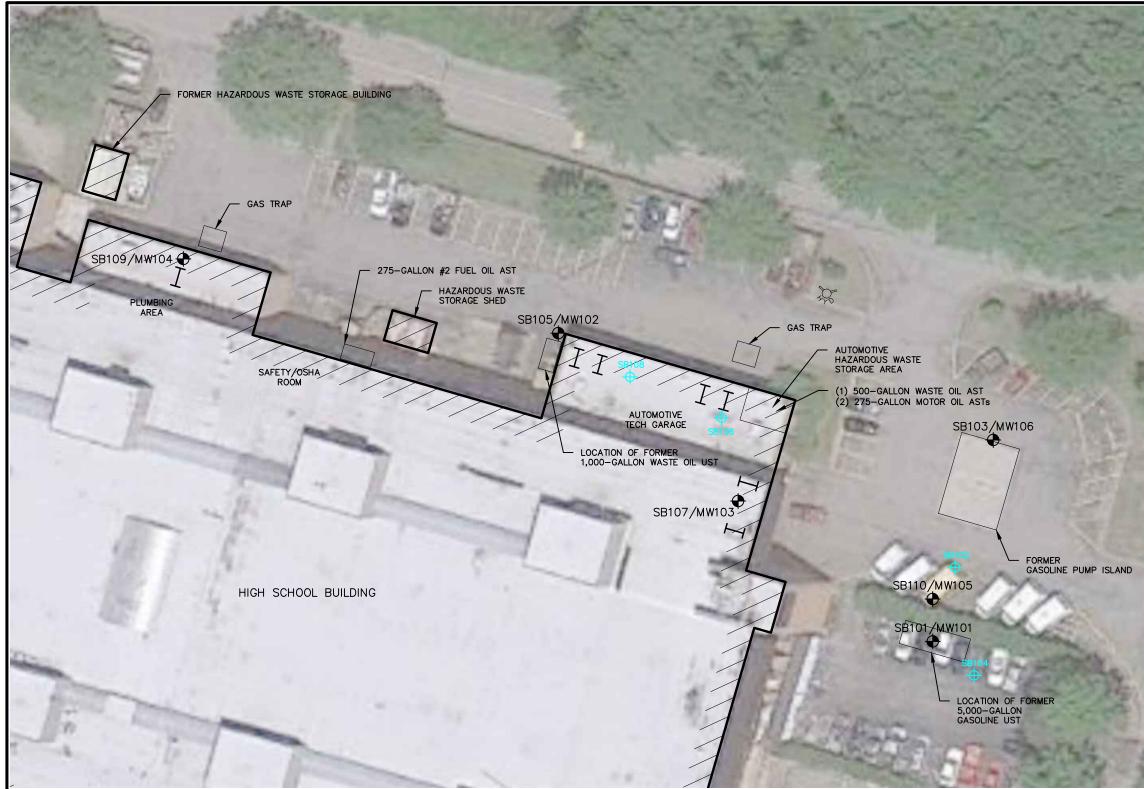
- 1. Samples were collected on September 17, 2014, by Ransom Consulting, Inc., and were analyzed by Alpha Analytical, Inc., of Westborough, Massachusetts.
- 2. BRL () = below reporting limit indicated in parentheses.
- 3. MCP Reportable Concentrations taken from 310 CMR 40.1600.

CONTOUR INTERVAL IS 3 METERS

UTM COORDINATES: 47:01:549mN

SITE COORDINATES: LATITUDE 42°26'45" LONGITUDE 71°16'11"


3:13:363mE


W S F

QUADRANGLE LOCATION 0 1000 2000 3000 4000

SCALE in FEET 1:25,000

RANSO	Consulting, Inc.	SITE	LOCATION MAP
PREPARED FOR: KAESTLE BOOS	SITE:		
ASSOCIATES, INC.	MINUTEMAN REGIONAL TECHNICAL HIGH SCHOOL	DATE:	SEPTEMBER 2014
325 FOXBOROUGH BLVD	758 MARRETT ROAD	PROJECT	: 101.01007
FOXBOROUGH, MASSACHUSETTS	LEXINGTON & LINCOLN, MASSACHUSETTS	FIGURE:	1

NOTES:

- 1. SITE PLAN BASED ON MEASUREMENTS AND OBSERVATIONS MADE BY RANSOM CONSULTING, INC. IN SEPTEMBER 2014. AERIAL IMAGE PROVIDED BY GOOGLE EARTH.
- 2. SOME FEATURES ARE APPROXIMATE IN LOCATION AND SCALE.
- 3. THIS PLAN HAS BEEN PREPARED FOR KAESTLE BOOS ASSOCIATES, INC. ALL OTHER USES ARE NOT AUTHORIZED, UNLESS WRITTEN PERMISSION IS OBTAINED FROM RANSOM CONSULTING, INC.

0 20 40 80 PREPARED FOR: KAESTLE ASSOCIATE 325 FOXBORO

	LECEND: SB101/MW101 SOL BORING/MONITORING WELL SB102 SOL BORING SOL BORING H HYDRAULIC LIFT IN-GROUND H HYDRAULIC LIFT IN-GROUND FIRE HYDRANT
GIONAL SCHOOL ROAD ASSACHUSETTS	DATE: SEPTEMBER 2014 PROJECT: 101.01007 FIGURE: 3

ATTACHMENT A

Photograph Log

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

> Ransom Consulting, Inc. Project 101.01007.002

Photograph Log

Location of vault and former 5,000-gallon gasoline tank.

Metal plate and two piston caps, with associated hydraulic line controls in plumbing area.

Piston (center, under aboveground lift) with associated hydraulic controls against wall (left), automotive garage.

Concrete patch at piston, with lines running north to the wall in southeast portion of automotive garage.

In-ground hydraulic lift (one of four) in automotive garage.

Fill port associated with the former 1,000 gallon waste oil UST located on west wall of automotive garage.

ATTACHMENT B

Geophysical Survey Report

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

> Ransom Consulting, Inc. Project 101.01007.002

GEOPHYSICAL SURVEY FOR UTILITIES AND OBSTRUCTIONS MINUTEMAN REGIONAL TECHNICAL HIGH SCHOOL 758 MARRETT ROAD LEXINGTON, MASSACHUSETTS

Prepared for:

Ransom Consulting, Inc. 12 Kent Way, Suite 100 Byfield, MA 01922-1221

Prepared by:

Hager GeoScience, Inc. 596 Main Street Woburn, MA 01801

File 2014063 September 2014

Copyright © 2014, Hager GeoScience, Inc. All rights reserved.

Hager GeoScience, Inc.

1.0 INTRODUCTION

This report details the results of a geophysical survey conducted by Hager GeoScience, Inc. (HGI) for Ransom Consulting, Inc. at the Minuteman Regional Technical High School in Lexington, Massachusetts. The objective of the survey was to locate in-floor hydraulic lifts possibly still in place under the floor in three areas on the ground floor of the high school. The secondary objective was to locate utilities and possible obstructions within and below the concrete slab.

2.0 DATA ACQUISITION

HGI personnel performed the survey during the evening on September 10th, 2014, using ground penetrating radar (GPR) supplemented by Ditch Witch Subsite 950 R/T and 3M Dynatel 2250 precision utility locators (PUL). A Ransom Consulting, Inc. representative was onsite to delineate the extent of the survey areas.

HGI personnel used spray paint and fiberglass tapes to lay out three GPR survey grids covering the locations suspected of having buried hydraulic lifts. The three grids were located in the OSHA training room, the plumbing room and the automotive service garage. The locations of select surface features and the survey areas are shown on Plates 1 through 3, AutoCAD maps created from the HGI field notes, interpretations, and field measurements taken at the time of the survey. In all three plates, north is up.

Discussions specific to the GPR and PUL collection are provided below, while Appendix A provides a more general discussion of the methods and their limitations.

2.1 GPR Data Acquisition

GPR data were collected using a Geophysical Survey Systems, Inc. (GSSI) SIR-20 digital acquisition system. A 400-MHz antenna mounted with a survey wheel for horizontal distance control was used for the data collection. GPR data were collected along bidirectional traverses, spaced 1 foot apart in the primary direction and 5 feet apart in the orthogonal direction. All data were displayed in real time on the system's color monitor while being simultaneously recorded on its hard disk drive (HDD).

The effective signal penetration was variable throughout the site and ranged from 5 to 8 feet below grade depending on the grid location, making it difficult to reliably detect targets below these depths in those areas.

Table 1 in Appendix B shows the pertinent parameters used for the GPR data collection.

Data from the GPR survey were downloaded to a PC at the HGI office for processing and analysis using GSSI's RADAN® 7 software.

2.2 Precision Utility Locating

A Ditch Witch Subsite 950 R/T and 3M Dynatel 2250 Precision Utility Locator (PUL) were used in conjunction with the GPR method to provide real-time utility locating. Where utilities were physically accessible (e.g., electrical conduits), the Subsite transmitter box was directly coupled with them in order to propagate a current with a unique frequency along the conductive conduit or utility. A receiver wand was then used to identify the location of the connected utility. The Subsite receiver was also used independently of the transmitter box in passive 50/60 Hz and radio mode to locate live electric lines. The Dynatel was used to sweep the survey area for underground utilities that had no surface features on which to induce a current.

The PUL-identified utilities were marked in the field with spray paint using industry-standard colors.

3.0 DATA REDUCTION AND ANALYSIS

The downloaded GPR data were archived, processed, and analyzed using GSSI's RADAN® 7. Prior to analysis, the raw GPR data required processing to reduce the detrimental effects of site-specific noise associated with interfering background frequency signals and reflections from surface and subsurface structures. The processed records were then used to construct 3D models of the surveyed areas. 3D models are useful for viewing the spatial qualities of the data and identifying subtle spatial features that may not be apparent in individual 2D records. The 3D models were sliced horizontally and vertically to observe patterns of GPR anomalies present in the radar data.

Each 2D record was also individually evaluated for possible anomalies. Preliminary interpretations based on analysis of the individual 2D records were plotted and evaluated in a spatial context using the 3D model. Conversely, spatial anomalies observed in the 3D model were re-examined on the individual records to ensure that all possible anomalies were evaluated.

The interpreted individual GPR targets were then exported to AutoCAD, where linear trends and areal anomalies were determined.

Due to the non-uniqueness of the reflected GPR signal, the exact identity of features causing anomalies cannot always be determined, and further investigation through excavation or drilling is recommended.

4.0 RESULTS

The results of the survey area shown on Plates 1 through 3:

- Plate 2 Plumbing Room
- Plate 3 Automotive Service Garage

Plate 1, Grid 1: OSHA Training Room

The GPR and PUL results did not indicate the presence of any buried lifts or associated piping, reservoirs or conduits at this location. The majority of the survey area appeared to be composed of a newer concrete and sub-base and likely indicates that the former systems have been removed.

Plate 2, Grid 2: Plumbing Room

The GPR and PUL interpretations did not indicate the presence of any unknown buried in-place lifts. The lift and associated piping of a known lift that was in-place during the time of the survey were identifiable in the GPR records and marked in the field during the survey. The GPR data show that the hydraulic lines do not extend beyond the one lift visible in the floor.

Plate 3, Grid 3: Automotive Service Garage

The GPR and PUL interpretations identified the lines and obstructions associated with the known automotive lifts present in the west and southeast portions of the garage. Plate 3 also shows the location of a large area of concrete, outlined in purple, with rebar pattern different from that in the rest of the garage. It is clear that the area was cut and replaced, potentially in order to remove lifts formerly present. Two other anomalies, labeled A and B (southeast portion of survey area), were detected near two current surface lifts. The sources of these originate near the surface and are likely the result of a change in concrete and not the presence of additional inplace lifts.

Multiple linear anomalies identified as possible utilities were also mapped in all three survey areas. These are shown on Plates 1 through 3 in industry-standard colors or, if unknown, as violet-colored lines.

The GPR-identified utilities are categorized based on their proximity to PUL markings and surface features (e.g., catch basin). The "GPR-Identified - Linear Anomaly" category represents utilities that could not be categorized as to type. Short segments in this category may represent portions of utilities or buried debris. Dashed lines/shapes indicate a lower confidence level in the interpretation, tildes indicate the termination of a potential utility/linear feature in the GPR records, and arrows indicate the possible continuation of a linear feature beyond the survey area. The utilities are color-coded in accordance with industry-accepted standards.

The "GPR-Identified - Anomalous Zone" category (cyan) represents an area containing multiple individual anomalies with a geometry and/or signal strength that stands out from the background GPR signal. These anomalies should be considered potential obstructions and can have causes ranging from changes in the soil/fill to buried debris. GPR anomaly and anomalous zone shapes may vary from those depicted in the legend. The shape of each anomaly reflects the general

outline that best fits that anomalous area and may not actually reflect the shape of the potential subsurface obstruction.

Depths shown adjacent to both GPR-identified utilities and anomalies are intended to indicate the approximate top of the utility or anomaly, not its vertical extent. These depths are based on velocity migration calculations and are approximate.

GPR- and PUL-identified features are labeled with their approximate depth in feet below ground surface. Where PUL-identified features do not show an approximate depth, this means that the feature's depth could not be determined while at the site. It should also be noted that a utility identified with both GPR and PUL may be shown at slightly different positions and depths by each method due to the different nature of the two sensing technologies.

In order to meet the objectives of the geophysical investigation, HGI used a conservative approach for anomaly identification. Obstructions of varying types can produce many unique and non-unique responses, particularly in the GPR records. Even slight variations in the GPR signals may be caused by legitimate obstructions and should considered suspect. However, a subsurface medium with a high degree of heterogeneity (e.g., fill containing bricks, cobbles, etc.) can produce a high number of GPR anomalies that might not be considered obstructions by others.

HGI recommends a minimum buffer of 2 to 3 feet on either side of the utility centerlines indicated on the map due to utility dimensions and inaccuracies from grid creation, data collection, and survey locating. It should be noted that GPR is an indirect method and thus cannot unambiguously determine the physical properties of anomalies, or that all reflectors interpreted as utilities or anomalies are related (see Limitations Section). In areas of particular concern, we recommend hand digging.

APPENDIX A: THE GEOPHYSICAL METHODS

A.1 Ground Penetrating Radar (GPR)

A.1.1 Description of the Method. The principle of ground penetrating radar (GPR) is the same as that used by police radar, except that GPR transmits electromagnetic energy into the ground. The energy is reflected back to the surface from interfaces between materials with contrasting electrical (dielectric and conductivity) and physical properties. The greater the contrast between two materials in the subsurface, the stronger the reflection observed on the GPR record. The depth of GPR signal penetration depends on the properties of the subsurface materials and the frequency of the antenna used to collect radar data. The lower the antenna frequency, the greater the signal penetration, but the lower the signal resolution.

A.1.2 Data Collection. HGI collects GPR data using a Geophysical Survey Systems (GSSI) SIR 2, 20, 2000 or 3000 ground penetrating radar system. Data are digitally recorded on the internal hard drive or flash memory of the GPR system. System controls allow the GPR operator to filter out noise, attributed to coupling noise caused by conductive soil conditions, spurious noise caused by local EMF fields, and internal system noise. For shallow surveys, we use antennas with center frequencies ranging from 2000- to 400-megahertz (MHz). For deeper penetration, we use lower frequency antennas ranging from 300 MHz to 15 MHz, depending on the anticipated target depth and the degree of signal penetration. All of these antenna configurations can collect data in continuous mode, distance mode, or as discrete point measurements using signal-stacking techniques. Since there is a trade-off between signal penetration and resolution, test data are sometimes collected using antennas at several different frequencies, with the highest frequency antenna that produces the highest quality data used. In some cases, data are collected with several antenna frequencies.

The horizontal scale of the GPR record shows distance along the survey traverse. In the continuous data collection mode, the horizontal scale on each GPR record is determined by the antenna speed along the surface. When a survey wheel is used, the GPR system records data with a fixed number of traces per unit distance. The GPR record is automatically marked at specified distance intervals along the survey line. The vertical scale of the radar record is determined by the velocity of the transmitted signal in the media under study and the range setting, or recording time window of the GPR system. The recording time interval, or range, represents the maximum two-way travel time in which data are recorded. The conversion of the two-way travel time of the transmitted signals to depth is determined by the propagation velocity of the GPR signal, which is site (media) specific. When little or no information is available about the makeup of subsurface materials, we estimate propagation velocities from handbook values and experience at similar sites or by CDP velocity surveys with a bi-static antenna.

A.1.3 Data Processing. After completion of data collection, the GPR data are transferred to a PC for review and processing using RADAN® software. When appropriate, we prepare 3D models of GPR data, which can be sliced in the X, Y, and Z directions.

The size, shape, and amplitude of GPR reflections are used to interpret GPR data. Objects such as metallic UST's and utilities produce reflections with high amplitude and distinctive hyperbolic shapes. Clay, concrete pipes, boulders and other in-situ features may produce radar signatures of similar shape but lower amplitude. The boundaries between saturated and unsaturated materials such as sand and clay, bedrock and overburden, generally also produce strong reflections.

A.1.4 Limitations of the Method. GPR signal penetration is site-specific. It is determined by the dielectric properties of local soil and fill materials. GPR signals propagate well in resistive materials such as sand and gravel; however, soils containing clay, ash- or cinder-laden fill or fill saturated with brackish or otherwise electrically conductive groundwater cause GPR signal attenuation and loss of target resolution. Concrete containing rebar or wire mesh also inhibits signal penetration.

The interpreted depths of objects detected using GPR are based on on-site calibration, handbook values, and/or estimated GPR signal propagation velocities from similar sites. GPR velocities and depth estimates may vary if the medium under investigation or soil water content is not uniform throughout the site.

Utilities are interpreted on the basis of reflections of similar size and depth that exhibit a linear trend; however GPR cannot unambiguously determine that all such reflectors are related. Fiberglass USTs or utilities composed of plastic or clay may be difficult to detect if situated in soils with similar electromagnetic properties, or if situated in fill with other reflecting targets that generate "clutter" or signal scattering and thus obscure other deeper reflectors. Objects buried beneath reinforced concrete pads or slabs may also be difficult, but possible, to detect.

As a rule of thumb, GPR can resolve utilities with a diameter of 1" per foot of depth (i.e., a 1"-diameter utility can be detected to a burial depth of 1 foot).

Changes in the speed at which the GPR antenna is moved along the surface causes slight variations in the horizontal scale of the recorded traverse. Distance interpolation may be performed to minimize the error in interpreted object positions. The variation in the horizontal scale of the GPR record may be controlled, to a certain extent, with a distance encoder or survey wheel. The GPR antenna produces a cone-shaped signal pattern that emanates approximately 45 degrees from horizontal front and back of the antenna. Therefore, buried objects may be detected before the antenna is located directly over them. GPR anomalies may appear larger than actual target dimensions.

GPR interpretation is more subjective than other geophysical methods. The interpretive method is based on the identification of reflection patterns that do not uniquely identify a subsurface target. Borings, test pits, site utility plans and other ground-truth are recommended to verify the interpreted GPR results.

A.2 Precision Utility Locating (PUL)

A.2.1 Description of the Method. HGI uses a Schonstedt MAC-51B, Ditch Witch SUBSITE 950 R/T precision utility locators, and/or a 3M Dynatel 2250 pipe and cable locator for utility location. The locator is a two-part system consisting of a signal transmitter and receiver. In active mode using the transmitter, utilities are traced by inducing a variety of signals onto exposed portions of conduits and piping. Alternatively, in the absence of convenient exposures, signals can be induced onto the lines by placing the transmitter on the ground above the suspected utility location. The receiver can also be used without the transmitter as a magnetic locator or to detect signal emissions (e.g., 60 Hertz for electric lines) at specific frequencies.

A.2.2 Limitations of the Method. Mapping subsurface objects, pipes, and utilities using a locator depends on recognizing physical phenomena at the ground surface. These phenomena can be electromagnetic waves or magnetic fields that are interpreted as being caused by subsurface objects. These waves or fields, however, can be attenuated and/or distorted by factors including soil moisture, steel reinforced concrete, and proximity to other surface and subsurface utilities. It has been found that vertical depth resolution beyond 5 feet below grade is questionable.

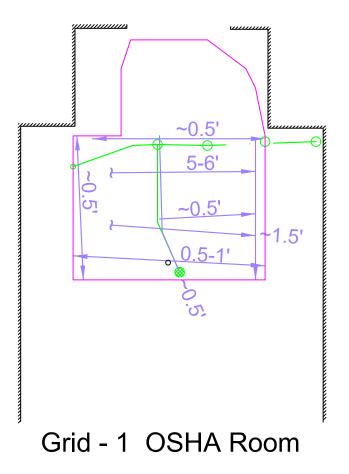

APPENDIX B: TABLE

Table 1GPR Survey Acquisition Parameters

Antenna Frequency (MHz)	Range (ns)	Survey Mode	Scan Rate (per sec)	Scan Rate (per ft)	Sample Rate (samples)	Effective Signal Depth (ft)
400	75	Wheel	120	30	512	5-8

Copyright © 2014, Hager GeoScience, Inc. All rights reserved.

Hager GeoScience, Inc.

NOTES:

1.) The base map was created from HGI field notes, grid marks, PUL and GPR interpretations.

2.) HGI's contributions to the base map are listed in the legend.

3.) The locations of utilities and obstructions presented by HGI are a "best fit" to the HGI created base map and should be considered approximate. Reference to HGI-located features is recommended.

4.) The "~" symbol indicates the termination of a utility or the inability of the geophysical tool to resolve that utility.

5.) An arrow ending a feature indicates the possible continuation of that feature beyond the surveyed limits.

6.) Dashed GPR-identified utilities indicate lower confidence in the interpretation of the feature.

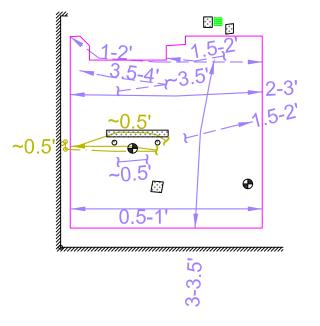
7.) Values listed with GPR- and PUL-identified features are depths in feet; depths of GPR-identified features are based on GPR two way travel time velocity conversions and are approximate.

8.) PUL-identified utilities showing no depths are the result of inconclusive findings at the time of the survey.

9.) GPR-identified utilities are categorized based on their proximity to PUL markings and/or surface features (e.g., manholes, catch basins, hydrants, etc.).

10.) A utility identified with both GPR and PUL may be shown at slightly different positions by each method due to the different nature of the two sensing technologies.

11.) The "GPR-Identified - Anomalous Zone" category represents an anomalous areas with geometry and/or signal strength that stands out from the background GPR signal. These anomalies can have causes ranging from changes in the soil/fill to buried


12.) GPR anomalous zone shapes may vary from those depicted in the legend. The shape of each anomaly reflects the general outline that best fits that anomalous area and may not actually reflect the shape of the potential subsurface obstruction. 13.) "HGI-Inferred" utilities are identified based on their alignment with surface features such as manholes and catch basins and/or are the continuation of partial GPR-identified alignments. These alignments have not been confirmed via GPR and/or PUL.

14.) Utility information presented on the base map not identified by HGI should be considered as present during any drilling or excavation activities.

15.) HGI recommends a minimum buffer of 2 to 3 feet on either side of utility centerlines and around anomaly extents as indicated on the map due to utility dimensions and inaccuracies from grid creation, data collection, and survey locating. We recommend larger buffer for electric lines, and further that they be turned off prior to excavating. In addition, it should be assumed that utilities that appear to terminate prior to crossing any excavation may actually continue, but could not be traced farther with GPR an Drilling and/or excavating should proceed with caution.

-

	Legend
	Survey Extent
	GPR Traverse
	GPR-Identified Water
	GPR-Identified Gas / Steam
	GPR-Identified Sewer / Drain
	GPR-Identified Linear Anomaly
	GPR-Identified Anomalous Zone
	GPR-Identified Change in Rebar
	– PUL-Identified Electric
	– PUL-Identified Water
	– PUL-Identified Gas / Steam
	 GPR-Identified Change in Rebar PUL-Identified Electric PUL-Identified Water PUL-Identified Gas / Steam HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Electric Manhole HGI-Located Drain Manhole HGI-Located Footing HGI-Located Potential Core Location Plate 1 September 2014 Project # 2014063 Geophysical Survey Results Grid - 1 OSHA Training Room Minuteman Regional TECH. HS
	HGI-Located Catch Basin
	HGI-Located Electric Manhole
	HGI-Located Drain Manhole
	HGI-Located Metal Floor Plates
	HGI-Located Footing
	HGI-Located Potential Core Location
	Plate 1
	September 2014 Project # 2014063
	Geophysical Survey Results
	•
d debris.	Minuteman Regional TECH. HS Lexington, MA
L. end a nd/or PUL.	Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 (781) 935-8111 hgi@hagergeoscience.com
	NOT ALL SUBSURFACE FEATURES MAY BE DEPICTED ON THIS MAP

Grid-2 Plumbing Room

NOTES:

1.) The base map was created from HGI field notes, grid marks, PUL and GPR interpretations.

2.) HGI's contributions to the base map are listed in the legend.

3.) The locations of utilities and obstructions presented by HGI are a "best fit" to the HGI created base map and should be considered approximate. Reference to HGI-located features is recommended.

4.) The "~" symbol indicates the termination of a utility or the inability of the geophysical tool to resolve that utility.

5.) An arrow ending a feature indicates the possible continuation of that feature beyond the surveyed limits.

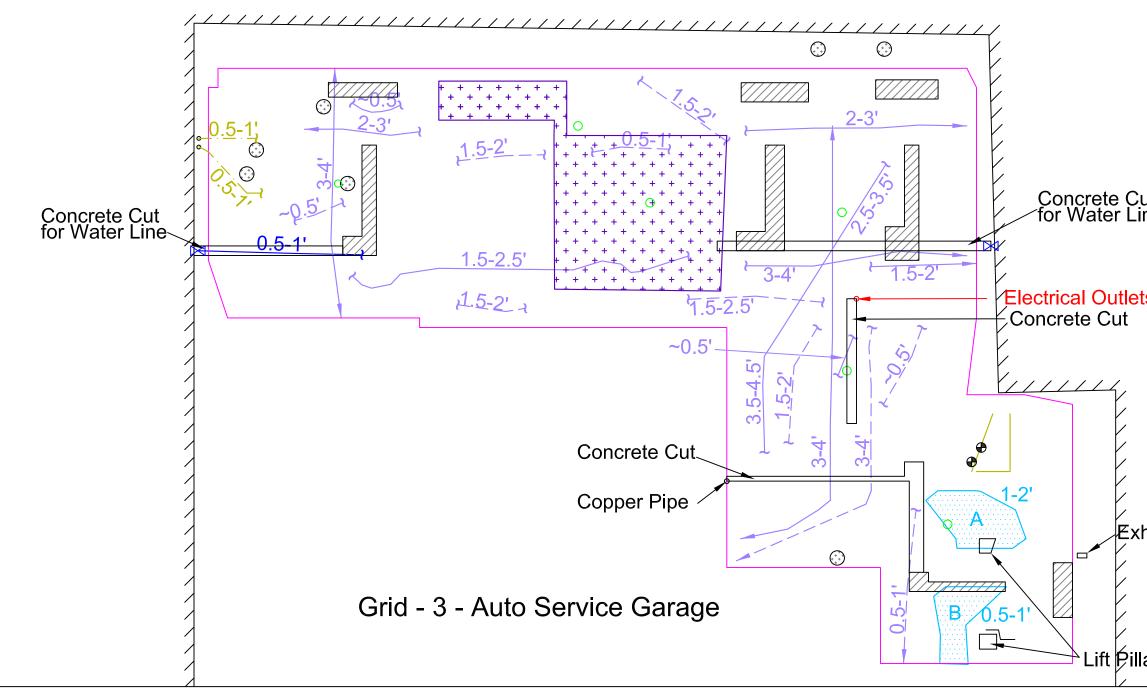
6.) Dashed GPR-identified utilities indicate lower confidence in the interpretation of the feature.

7.) Values listed with GPR- and PUL-identified features are depths in feet; depths of GPR-identified features are based on GPR two way travel time velocity conversions and are approximate.

8.) PUL-identified utilities showing no depths are the result of inconclusive findings at the time of the survey.

9.) GPR-identified utilities are categorized based on their proximity to PUL markings and/or surface features (e.g., manholes, catch basins, hydrants, etc.).

10.) A utility identified with both GPR and PUL may be shown at slightly different positions by each method due to the different nature of the two sensing technologies.


11.) The "GPR-Identified - Anomalous Zone" category represents an anomalous areas with geometry and/or signal strength that stands out from the background GPR signal. These anomalies can have causes ranging from changes in the soil/fill to buried

12.) GPR anomalous zone shapes may vary from those depicted in the legend. The shape of each anomaly reflects the general outline that best fits that anomalous area and may not actually reflect the shape of the potential subsurface obstruction. 13.) "HGI-Inferred" utilities are identified based on their alignment with surface features such as manholes and catch basins and/or are the continuation of partial GPR-identified alignments. These alignments have not been confirmed via GPR and/or PUL.

14.) Utility information presented on the base map not identified by HGI should be considered as present during any drilling or excavation activities.

15.) HGI recommends a minimum buffer of 2 to 3 feet on either side of utility centerlines and around anomaly extents as indicated on the map due to utility dimensions and inaccuracies from grid creation, data collection, and survey locating. We recomme larger buffer for electric lines, and further that they be turned off prior to excavating. In addition, it should be assumed that utilities that appear to terminate prior to crossing any excavation may actually continue, but could not be traced farther with GPR an Drilling and/or excavating should proceed with caution.

	Legend
	Survey Extent
	GPR Traverse
	GPR-Identified Water
	GPR-Identified Gas / Steam
	GPR-Identified Sewer / Drain
	GPR-Identified Linear Anomaly
	GPR-Identified Anomalous Zone
	 , , GPR-Identified Change in Rebar
	– · — PUL-Identified Electric
	– · — PUL-Identified Water
	– PUL-Identified Gas / Steam
	HGI-Located Water Valve
	HGI-Located Catch Basin
	HGI-Located Electric Manhole
	HGI-Located Drain Manhole
	HGI-Located Metal Floor Plates
	HGI-Located Footing
	HGI-Located Potential Core Location
	0 10 20 Feet
	Plate 2
	September 2014 Project # 2014063
	Geophysical Survey Results
	Grid - 2
d debris.	Plumbing Room Minuteman Regional TECH. HS Lexington, MA
 end a nd/or PUL.	Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 (781) 935-8111 hgi@hagergeoscience.com
	NOT ALL SUBSURFACE FEATURES MAY BE DEPICTED ON THIS MAP

NOTES:

1.) The base map was created from HGI field notes, grid marks, PUL and GPR interpretations.

2.) HGI's contributions to the base map are listed in the legend.

- 3.) The locations of utilities and obstructions presented by HGI are a "best fit" to the HGI created base map and should be considered approximate. Reference to HGI-located features is recommended.
- 4.) The "~" symbol indicates the termination of a utility or the inability of the geophysical tool to resolve that utility.
- 5.) An arrow ending a feature indicates the possible continuation of that feature beyond the surveyed limits.

6.) Dashed GPR-identified utilities indicate lower confidence in the interpretation of the feature.

7.) Values listed with GPR- and PUL-identified features are depths in feet; depths of GPR-identified features are based on GPR two way travel time velocity conversions and are approximate.

8.) PUL-identified utilities showing no depths are the result of inconclusive findings at the time of the survey.

9.) GPR-identified utilities are categorized based on their proximity to PUL markings and/or surface features (e.g., manholes, catch basins, hydrants, etc.).

10.) A utility identified with both GPR and PUL may be shown at slightly different positions by each method due to the different nature of the two sensing technologies.

11.) The "GPR-Identified - Anomalous Zone" category represents an anomalous areas with geometry and/or signal strength that stands out from the background GPR signal. These anomalies can have causes ranging from changes in the soil/f

12.) GPR anomalous zone shapes may vary from those depicted in the legend. The shape of each anomaly reflects the general outline that best fits that anomalous area and may not actually reflect the shape of the potential subsurface obstruct 13.) "HGI-Inferred" utilities are identified based on their alignment with surface features such as manholes and catch basins and/or are the continuation of partial GPR-identified alignments. These alignments have not been confirmed via GPR at 14.) Utility information presented on the base map not identified by HGI should be considered as present during any drilling or excavation activities.

15.) HGI recommends a minimum buffer of 2 to 3 feet on either side of utility centerlines and around anomaly extents as indicated on the map due to utility dimensions and inaccuracies from grid creation, data collection, and survey locating.

larger buffer for electric lines, and further that they be turned off prior to excavating. In addition, it should be assumed that utilities that appear to terminate prior to crossing any excavation may actually continue, but could not be traced farther wit Drilling and/or excavating should proceed with caution.

ut ne GPR-Identified Anomalous Zon Image:									
GPR Traverse GPR-Identified Water GPR-Identified Gas / Steam GPR-Identified Linear Anomaly GPR-Identified Linear Anomaly GPR-Identified Linear Anomaly GPR-Identified Change in Reba PUL-Identified Change in Reba PUL-Identified Change in Reba PUL-Identified Change in Reba PUL-Identified Water PUL-Identified Gas / Steam HGI-Located Water Valve HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Drain Manhole *** HGI-Located Footing • HGI-Located Footing • HGI-Located Potential Core Loo haust Vent 0 1ar 0 10 20 *** HGI-Located Potential Core Loo haust Vent 1ar 0 10 20 *** HGI-Located Potential Core Loo hautomotive Service Garage Minuteman Regional TECH. H Lexington, MA		Legend							
ut GPR-Identified Water GPR-Identified Gas / Steam GPR-Identified Linear Anomaly GPR-Identified Anomalous Zon Image Image GPR-Identified Change in Reba Image Image GPR-Identified Change in Reba Image Image <			Survey Extent						
ut GPR-Identified Gas / Steam GPR-Identified Sewer / Drain GPR-Identified Linear Anomaly GPR-Identified Anomalous Zon Image: GPR-Identified Change in Reba Image: Image			GPR Traverse						
ut GPR-Identified Sewer / Drain GPR-Identified Linear Anomaly GPR-Identified Linear Anomaly GPR-Identified Change in Reba - PUL-Identified Water - PUL-Identified Gas / Steam MISS HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Drain Manhole + HGI-Located Footing HGI-Located Potential Core Low HGI-Located Potential Core Low haust Vent Image: Geophysical Survey Results Grid - 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 Hager GeoScience, Inc.			GPR-Identified Water						
ut GPR-Identified Linear Anomaly GPR-Identified Linear Anomaly GPR-Identified Linear Anomaly GPR-Identified Change in Rebain GPR-Identified Change in Rebain PUL-Identified Electric PUL-Identified Electric PUL-Identified Gas / Steam HGI-Located Water Valve HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Drain Manhole HGI-Located Floor Plates HGI-Located Potential Core Loo HGI-Located Potential Core Loo haust Vent Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. S96 Main Street, Woburn, MA 01801 September 2014			GPR-Identified Gas / Steam						
ut GPR-Identified Anomalous Zon Ime Image: The second			GPR-Identified Sewer / Drain						
Image:			GPR-Identified Linear Anomaly						
Image: Second constraints Image: Figure 3 Image: Second constraints Image: Second constraints Image: GeoScience, Inc. Second constraints	ut		GPR-Identified Anomalous Zone						
A PUL-Identified Water PUL-Identified Gas / Steam HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Electric Manhole HGI-Located Drain Manhole HGI-Located Metal Floor Plates HGI-Located Footing HGI-Located Potential Core Loc HGI-Located Potential Core Loc HGI-Locate	ne	+ + +	GPR-Identified Change in Rebar						
Image: Second structure PUL-Identified Gas / Steam HGI-Located Water Valve HGI-Located Catch Basin HGI-Located Electric Manhole HGI-Located Drain Manhole HGI-Located Drain Manhole HGI-Located Floor Plates HGI-Located Footing HGI-Located Footing HGI-Located Potential Core Low HGI-Located Potential Core Low haust Vent Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H. Lexington, MA Hager GeoScience, Inc. S96 Main Street, Woburn, MA 01801 Struct, Woburn, MA 01801		<u> </u>	PUL-Identified Electric						
Image: Construction of the construc			PUL-Identified Water						
HGI-Located Catch Basin HGI-Located Electric Manhole HGI-Located Drain Manhole HGI-Located Metal Floor Plates HGI-Located Footing HGI-Located Potential Core Loc HGI-Located Potential Core Loc Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA	S	<u> </u>	PUL-Identified Gas / Steam						
HGI-Located Electric Manhole HGI-Located Drain Manhole HGI-Located Metal Floor Plates HGI-Located Footing HGI-Located Potential Core Loc Haust Vent Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA		\bowtie	HGI-Located Water Valve						
haust Vent ar HGI-Located Drain Manhole HGI-Located Metal Floor Plates HGI-Located Potential Core Loc HGI-Located Potential Core Loc HGI-Located Potential Core Loc HGI-Located Potential Core Loc HGI-Located Potential Core Loc Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801			HGI-Located Catch Basin						
Image: state of the state		$\overline{\bigcirc}$	HGI-Located Electric Manhole						
HGI-Located Footing HGI-Located Potential Core Located HGI-Located Potential Core Located Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		Ŏ	HGI-Located Drain Manhole						
HGI-Located Potential Core Loc haust Vent ar Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		+++	HGI-Located Metal Floor Plates						
haust Vent ar Plate 3 Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. He Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801			HGI-Located Footing						
ar Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		•	HGI-Located Potential Core Location						
ar Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801									
ar Plate 3 Plate 3 September 2014 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 Street, Woburn, MA 01801	haust Vent								
ar Plate 3 Plate 3 September 2014 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 Street, Woburn, MA 01801									
ar Plate 3 Plate 3 September 2014 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 Street, Woburn, MA 01801									
ar Plate 3 Plate 3 September 2014 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801 Street, Woburn, MA 01801									
Plate 3 September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA fill to buried debris. ction. and/or PUL. Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		° 	10 20						
September 2014 Project # 2014 Geophysical Survey Results Grid - 3 Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA till to buried debris. Hager GeoScience, Inc. September 2014 Project # 2014	ar								
Geophysical Survey Results Grid - 3 Automotive Service Garage Minuteman Regional TECH. Here Ction. and/or PUL. Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801			Plate 3						
fill to buried debris. ction. and/or PUL. Grid - 3 Automotive Service Garage Minuteman Regional TECH. H Lexington, MA Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		Septem	ber 2014 Project # 2014063						
fill to buried debris. ction. and/or PUL. //e recommend a		Geo							
fill to buried debris. ction. and/or PUL. Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801									
fill to buried debris. ction. and/or PUL. Hager GeoScience, Inc. 596 Main Street, Woburn, MA 01801		-							
ction. and/or PUL. Hager GeoScience, Inc. /e recommend a 596 Main Street, Woburn, MA 01801	fill to buried debrie	_							
/e recommend a 596 Main Street, Woburn, MA 01801	ction.								
		596 N							
vith GPR and/or PUL. (781) 935-8111 Ingl@hagergeoscience.co	ith GPR and/or PUL.	(781) 935-8111 hgi@hagergeoscience.com							
NOT ALL SUBSURFACE FEATURES		NOT ALL SUBSURFACE FEATURES							
MAY BE DEPICTED ON THIS MAP		MAY	BE DEPICTED ON THIS MAP						

ATTACHMENT C

Soil Boring and Monitoring Well Logs

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

> Ransom Consulting, Inc. Project 101.01007.002

DANG	SOM	BORING	BORING AND MONITORING						WELL LOG: SB101/MW10							
Consulting		Reviewed by:	DFM/H	ED	Total De	pth:	9 Fe	et	Logged B	By:	1	DFM				
Engineers		Date Reviewe	d: 9/30/1	14	Boring D	iameter	: 2 In	ches	Date Dril	led: 9/	12/14 to	9/12/				
and Scient	2" Asphalt. S1 (0' - 5.0') Brown, fine S2 (5.0' - 9.0') Top 4" - b coarse SAND and fine G medium SAND, some Si petroleum sheens throug Refusal, base of vault; b Refusal, base of vault; b S: ing advanced using Ge ques. nple designated with s Il finished with a lockin	GW Observed at: 5 Feet Well Stic			kup:	0		Driller:	Northe	orthern Drill Service						
	ased on a modi	DESCRIPTIC fied Burmeister Soi		System)		SAMDLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	OVM (ppmv)	DEPTH	WELL				
	0') Brown, fine \$ 9.0') Top 4" - br ND and fine GF SAND, some Sitt sheens through	own, fine to mediur RAVEL. Next 3" - or , trace fine to coars hout, petroleum odd	n SAND. Next 6 ganics. Bottom e Gravel, Wet t	11" - brow	n, fine to		S1	NA	60/19	1.8						
] and N	lative Fill	Bentonite	Bentoni	e Grout	CLIEN	oncrete	1	PVC Scree	en So	 blid PVC	Riser				
chniques. Sample design Well finished w to ground.	ated with so vith a locking	olid fill submitte g, flush-mounte	d for laborat d roadbox, o	tory anal	ysis. d	Kaes SITE: Minu 758 I	tle Bo temar Marret	n Reg t Ro	ssocia gional ⁻ ad on, Ma	Techr	nical H					
						Projec	t No.:	101	1.01007	Pag	ie:					

2" Asphalt.	Reviewed By: DFM/HED Date Reviewed: 9/30/14 GW Observed at: 6.5 Feet DESCRIPTION ified Burmeister Soil Classification System) to medium SAND, some fine to medium Grav	Total Dept Boring Dia Well Stickt	meter:	15 F 2 Inc 0 щ е	hes	Logged E Date Drill Driller:	led: 9/1 Norther	12/14 to n Drill S	DFM 9/12/14 Service
Engineers and Scientists (Based on a mod 2" Asphalt. S1 (0' - 5.0') Brown, fine	GW Observed at: 6.5 Feet DESCRIPTION ified Burmeister Soil Classification System)		up:	0		Driller:	Norther	n Drill S	
(Based on a mod 2" Asphalt. S1 (0' - 5.0') Brown, fine	DESCRIPTION ified Burmeister Soil Classification System)	Well Sticku						1	ervice
2" Asphalt. S1 (0' - 5.0') Brown, fine	ified Burmeister Soil Classification System)		APLE	щщ	UNTS (es)	TION/	0	Ê	-
S1 (0' - 5.0') Brown, fine	to medium SAND, some fine to medium Grav		SAN	SAMPLE	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmd (ppmv)	DEXSIL (ppm)	DЕРТН
	ne SAND, trace fine to coarse Gravel, Wet at			S1	NA	60/30	<1	NM	- 5 -
techniques.	eoprobe 6620DT and direct-drilling olid fill submitted for laboratory ana not measured.	lysis. M	ITE: Ainute 58 M	le Bo eman larret	Reg t Roa	ssocia gional T ad on, Ma	Techn	nical H	

Consulting		Reviewed by: DEM/MEP Total		pth:	15 Feet		Logged By: DFM				
Engine	ers	Date Reviewed: 6/30/14	Boring D)iameter:	2 Inc	hes	Date Drill	ed: 9/	12/14 to	9/12/	
Enginee and Sci	entists	GW Observed at: 7 Feet	Well Stic		0		Driller: Northern Drill Service				
	(Based on a modi	DESCRIPTION fied Burmeister Soil Classification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmdd) MVO	рертн	WELL	
2" A: S1 (I brow SAN - som - 5 S2 (I fine :	n, fine SAND, trace (D and fine GRAVEL, e fine to medium Gra 5.0' - 10.0') Top 18" - SAND, some organic	vn, fine to medium SAND and fine Gravel. Gravel, Wet. Next 3" - dark-brown, fine to n Dry. Bottom 25" - brown, fine to medium S vel, trace concrete, Dry. similar to bottom 25" of S1. Middle 26" - da s, trace fine Gravel, Wet. Bottom 16" - brow	nedium AND, ark-brown,	S	S1	NA	60/41	<1		M CO	
_	D, trace fine Gravel, ' 10.0' - 15.0') Grayish-	Wet. brown, fine to medium SAND and SILT, W	et.		S2	NA	60/60	4.2			
- - -	om of boring 15'.				S3	NA	60/60	2.8			
	in orboring to.										
EGEND: Fi	lter Sand N	ative Fill Bentonite Bento	Donite Grout		ncrete	I	PVC Scree	en S	olid PVC	Riser	
chniques. Sample de	signated with so	oprobe 6620DT and direct drilling lid fill submitted for laboratory an , flush-mounted roadbox, cemer	alysis.	SITE: Minute 758 M	le Bo eman larret	Reg t Ro	ssocia gional ⁻ ad on, Ma	Fechr	nical H		

RANSOM	BORING LOG:						S	B10	4
Consulting	Reviewed By: DFM/HED	Total De	epth:	10 F	eet	Logged E	By:		DFM
Engineers and Scientists	Date Reviewed: 9/30/14	Boring D	Diameter:	2 Inc	hes	Date Drill	ed: 9/	12/14 to	9/12/1
and Scientists	GW Observed at: 8 Feet	Well Stid	ckup:	0		Driller:	Norther	n Drill S	ervice
H H H H H H H H H H H H H H H H H H H	DESCRIPTION ied Burmeister Soil Classification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmdd) MVO	DEXSIL (ppm)	DEPTH
2" Asphalt. S1 (0' - 5.0') Brown, fine to	o medium SAND, some fine to medium Grav	vel, Dry.		S1	NA	60/22	<1	NM	_
- 5	S1, Wet at 8'.								5 5
-				S2	NA	60/13	<1	NM	_
10 Bottom of boring 10'.									— 10
15									15-
echniques.	pprobe 6620DT and direct drilling lid fill submitted for laboratory ana not measured.		SITE: Minute 758 M	le Bo eman larret	Reg t Roa	ssocia gional 1 ad on, Ma	Techr	nical F	
			Project	a. 9		100	Pag		1

Car	aulting	Reviewed by: DFM/11ED	Total D	epth:	15 Fe	eet	Logged B	v:		DFM
Eng	ANSOM nsulting gineers	Date Reviewed: 9/30/14		Diameter:	2 Inc		Date Drill		_	
and	gineers Scientists	GW Observed at: 9 Fee			0		Driller:		rn Drill S	
ЛЕРІН	(Based on a modi	DESCRIPTION fied Burmeister Soil Classification Syster	n)	SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmdd) MVC	DEPTH	WELL
	concrete. Bottom 19" - br S2 (5.0' - 10.0') Similar to	vn, fine SAND, trace coarse Gravel. Mide own, fine to medium SAND, some fine G bottom 19" of S1, Wet at 9'.	ravel, Dry.	0	51 S1 S3	NA	60/26 60/35 60/37	<1 1.0		
echniqu . Samp . Well f nto grou	Filter Sand N g advanced using Ge es. le designated with so inished with a locking	oprobe 6620DT and direct drilli lid fill submitted for laboratory a g, flush-mounted roadbox, cem	analysis.	CLIEN Kaest SITE: Minute 758 M	le Bo eman larret	os A Reg t Ro	PVC Scree	tes Ir Fechi	nical H	H.S.

	ANCOM	BORING LOG:						S	B10	6
Co	ANSOM nsulting	Reviewed By: DFM/HED	Total Depth	1:	15 F	eet	Logged E	By:		DFM
En	gineers d Scientists		Boring Dian	neter:	2 Inc	hes	Date Drill	ed: 9/	13/14 t	0 9/13/1
and	d Scientists	GW Observed at: 9.5 Feet	Well Sticku	p:	0		Driller:	Norther	n Drill S	Service
DEPTH	(Based on a mod	DESCRIPTION ified Burmeister Soil Classification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmdd) MVO	DEXSIL (ppm)	рертн
-10	S2 (5.0' - 10.0') Top 24" - SAND and cobble, Wet a	e SAND, trace fine to medium Gravel, Dry. - similar to S1. Bottom 4" - brown, fine to mediu t 9.5'. medium to coarse SAND, some fine to coarse C			S1	NA	60/23	<1	NM	10 -
techniqu 2. Samp	g advanced using Ge les.	eoprobe 6620DT and direct drilling olid fill submitted for laboratory analy not measured.	/sis. M	ITE: linute 58 M	le Bo emar larret	r Reg t Ro	ssocia gional ⁻ ad on, Ma	Techr	nical	

Reviewed by: DFM //HEP Date Reviewed: 9/30/14 GW Observed at: 9 Feet DESCRIPTION Tied Burmeister Soil Classification System) SAND, trace fine Gravel, Dry.	Total Depth: Boring Diam Well Stickup	eter:	15 Fe 2 Inc 0 NUMBER	-	Logged B Date Driller Driller:	ed: 9/	rn Drill Se	
GW Observed at: 9 Feet DESCRIPTION ied Burmeister Soil Classification System)	-	:	0		Driller:	Northe	rn Drill Se	ervice
ied Burmeister Soil Classification System)				BLOW COUNTS (per 6 inches)				C. C. Carrie
SAND, trace fine Gravel, Dry.		S	ωz	BB		0		щÖ
			S1	NA	60/21	<1		MC
e to medium SAND, some fine to medium (Gravel,		S2	NA	60/22	<1		
dark-brown, fine to medium SAND, trace fir	ne Gravel,		S3	NA	60/50	<1		
ative Fill Bentonite Bento oprobe 6620DT and direct drilling lid fill submitted for laboratory an	nite Grout CL Ka SI ^T alysis. Mi ted 75	Cor IEN aestl TE: nute 8 M	eman	os A Reg t Roa	ssocia gional 1 ad	tes Ir Fechi	nc. nical H	I.S.
	brown, fine to coarse SAND, some fine to dark-brown, fine to medium SAND, trace fir fine to medium SAND, some Silt, little fine t ative Fill Bentonite Bento oprobe 6620DT and direct drilling	ative Fill Bentonite Bentonite Grout pprobe 6620DT and direct drilling lid fill submitted for laboratory analysis. , flush-mounted roadbox, cemented not measured.	brown, fine to coarse SAND, some fine to medium dark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse ative Fill Bentonite Bentonite Grout Corr oprobe 6620DT and direct drilling hid fill submitted for laboratory analysis. , flush-mounted roadbox, cemented not measured.	brown, fine to coarse SAND, some fine to medium dark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse s3 s3 ine to medium SAND, some Silt, little fine to coarse s3 s3 ine to medium SAND, some Silt, little fine to coarse s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3	brown, fine to coarse SAND, some fine to medium dark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse S3 NA S3 NA S4 S3 NA S5 S3 NA S6 S3 NA S7 S3 NA S7 S3 S3 S7 S7 S7 S7 S7 S7	brown, fine to coarse SAND, some fine to medium dark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse S3 NA 60/22 S3 NA 60/50 S1 Entonite Entonite Grout S1 Entonite Concrete PVC Screet PVC Screet S1 S1 S1 S1 S1 S1 S1 S1 S2 S1 S2 NA S3 NA S3 NA S4 S2 S4 S4 S4 S4 <td>brown, fine to coarse SAND, some fine to medium Jark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse S2 NA 60/22 <1</td> S3 NA 60/50 <1	brown, fine to coarse SAND, some fine to medium Jark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse S2 NA 60/22 <1	brown, fine to coarse SAND, some fine to medium Jark-brown, fine to coarse SAND, some fine to medium Jark-brown, fine to medium SAND, trace fine Gravel, ine to medium SAND, some Silt, little fine to coarse S2 NA 60/22 <1

							B108	-
Reviewed By: DGM/HED	Total Depth:		15 F	eet	Logged E	By:		DFM
Date Reviewed: 9/20/14	Boring Diam	eter:	2 Inc	nes	Date Drill	ed: 9/1	3/14 to	9/13/14
GW Observed at: 9 Feet	Well Stickup): 	0		Driller:	Norther	n Drill S	ervice
DESCRIPTION ified Burmeister Soil Classification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	(vmdd) MVO	DEXSIL (ppm)	DEPTH
similar to S1. Middle 1" - concrete. Bottom 20"			S1 S2	NA	60/20	<1	NM	5 -
, some fine to medium Gravel, Wet. Bottom 21	"-		S3	NA	60/48	<1	NM	10 -
blid fill submitted for laboratory analy	/sis. M 75	TE: inute 58 N	le Bo eman larret	Reg t Ro	gional ⁻ ad	Techr	nical F	
	GW Observed at: 9 Feet DESCRIPTION Ified Burmeister Soil Classification System) SAND, some fine Gravel, Dry. similar to S1. Middle 1" - concrete. Bottom 20" ND, trace fine Gravel, Wet at 9'. similar to bottom 20" of S2. Middle 18" - brown some fine to medium Gravel, Wet. Bottom 21 ND and medium to coarse Gravel, trace cobbl exporobe 6620DT and direct drilling	Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system Image: Comparison of the system SAND, some fine Gravel, Dry. Sand the system Similar to S1. Middle 1" - concrete. Bottom 20" - ND, trace fine Gravel, Wet at 9'. Sand the system similar to bottom 20" of S2. Middle 18" - brown, some fine to medium Gravel, Wet. Bottom 21" - AND and medium to coarse Gravel, trace cobble, Wet. Cl expropte 6620DT and direct drilling bild fill submitted for laboratory analysis. not measured. M	GW Observed at: 9 Feet Well Stickup: IDESCRIPTION (fied Burmeister Soil Classification System) Image: Classification System Image: Classification System SAND, some fine Gravel, Dry. Samilar to S1. Middle 1" - concrete. Bottom 20" - ND, trace fine Gravel, Wet at 9'. Image: Classification System Image: Classification System similar to bottom 20" of S2. Middle 18" - brown, some fine to medium Gravel, Wet at 9'. Image: Classification 21" - NDD and medium to coarse Gravel, trace cobble, Wet. Image: Classification 21" - NDD and medium to coarse Gravel, trace cobble, Wet. soporobe 6620DT and direct drilling SITE: Minute 758 M Lincol Image: Site Site Site Site Site Site Site Site	GW Observed at: 9 Feet Well Stickup: 0 DESCRIPTION ified Burmeister Soil Classification System) Image: Classification System Image: Classification System SAND, some fine Gravel, Dry. S1 similar to S1. Middle 1" - concrete. Bottom 20" - VD, trace fine Gravel, Wet at 9. S1 similar to bottom 20" of S2. Middle 18" - brown, some fine to medium Gravel, Wet Bottom 21" - IND and medium to coarse Gravel, trace cobble, Wet. S3 similar to bottom 20" of S2. Middle 18" - brown, some fine to medium Gravel, Wet. Bottom 21" - IND and medium to coarse Gravel, trace cobble, Wet. S3 similar to bottom 20" of S2. Middle 18" - brown, some fine to medium for avel, Wet. Bottom 21" - IND and medium to coarse Gravel, trace cobble, Wet. S3 similar to bottom 20" of S2. Middle 18" - brown, some fine to medium for avel, Wet. Bottom 21" - IND and medium to coarse Gravel, trace cobble, Wet. S3 state coarse Gravel, trace cobble, Wet. S3 soprobe 6620DT and direct drilling blid fill submitted for laboratory analysis. not measured. S1TE: Minuteman 758 Marret Lincoln/Lex	GW Observed at: 9 Feet Well Stickup: 0 DESCRIPTION iffed Burmeister Soil Classification System) u uwy g uwy g	Image: Comparison of the second se	GW Observed at: 9 Feet Well Stickup: 0 Driller: Norther DESCRIPTION lifed Burmeister Soil Classification System) If group of gr	GW Observed at: 9 Feet Well Stickup: 0 Driller: Northerm Drill S DESCRIPTION ifed Burneister Soil Classification System) II and the second se

Ille	ANSOM	BORING AND MONIT	1						9/MV	
Co	nsulting gineers d Scientists	Reviewed by: DFM/HED	Total De		15 F		Logged B			DFM
and	d Scientists	Date Reviewed: 9/30/14	Boring D		2 Inc	ches	Date Drill	-1-36 - 5Y	13/14 to	
1		GW Observed at: 8 Feet	Well Stic	kup:	0	0	Driller:	Northe	rn Drill Se	
DEPTH	(Based on a modif	DESCRIPTION fied Burmeister Soil Classification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	OVM (ppmv)	DEPTH	WELL CONSTRUCTION
-	5" - concrete. S1 (0' - 5.0') Brown, fine S	SAND, trace medium Gravel and concrete, E	Dry.							
					S1	NA	60/34	<1		
5		oncrete. Middle 15" brown, fine SAND, som dark-brown, fine SAND, Wet, slight petroleu			S2	NA	60/44	<1	5 	
	S3 (10.0' - 15.0') Similar to	o bottom 24" of S2.			S3			<1	 	
					S4	NA	60/50	<1		
15	Bottom of boring 15'.								-15-	
EGENI			mite Grout		≡ ≡ ncrete		PVC Scree	en S	olid PVC	Riser
chniqu	g advanced using Geo ues.	oprobe 6620DT and direct drilling		SITE:	le Bo		ssocia			
. Well f	finished with a locking	lid fill submitted for laboratory ana , flush-mounted roadbox, cement not measured.	ed	758 N	larret	t Ro	gional [™] ad on, Ma			
				Project	No.:	10	1.01007	Pag	ge:	

	RANSOM	BORING AND MON	ITORIN	IG W	ELL	LOC	9: S	SB11	0/MV	V105
	Consulting	Reviewed by: DEM/ HEP	Total D	epth:	15 F	eet	Logged I	Зу:		DFM
Ĕ	Consulting Engineers nd Scientists	Date Reviewed: 01/20/14	Boring	Diameter	: 2 In	ches	Date Dril	led: 9/	/13/14 to	9/13/14
a	nd Scientists	GW Observed at: 7.5 Fee	et Well St	tickup:	0		Driller:	Northe	ern Drill Se	ervice
DEPTH	(Based on a modi	DESCRIPTION fied Burmeister Soil Classification System	n)		SAMPLE NUMBER	BLOW COUNTS	PENETRATION	(vmdd) MVO	рертн	WELL CONSTRUCTION
	2" asphalt. S1 (0' - 5.0') Brown, fine S	SAND, some fine to medium Gravel, Dry.		XXX	8					
					S1	NA	60/27	<1		
- 5	S2 (5.0' - 10.0') Top 11" - fine to medium Gravel, tra	similar to S1. Bottom 20" - brown, fine S/ ace Silt, Wet at 7.5'.	AND, some						- 5-	
					S2	NA	60/31	<1		
	S3 (10.0' - 15.0') Similar t	o bottom 20" of S2.								
• •					S3	NA	60/37	<1		
-15	Bottom of boring 15'.								-15-	
LEGE		lative Fill Bentonite Ber	TTT ntonite Grout	c			PVC Scree	en S	l Solid PVC	Riser
techni	ing advanced using Ge ques.	oprobe 6620DT and direct drillin		SITE	tle Bo		Associa gional ⁻			IS
3. We into gr	Il finished with a locking	, flush-mounted roadbox, ceme		758	Marret	tt Ro	-			
				Proie	ct No.:	10	1.01007	Pa	ae:	1

ATTACHMENT D

Copies of Laboratory Chemical Analysis Data Reports

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

> Ransom Consulting, Inc. Project 101.01007.002

ANALYTICAL REPORT

Lab Number:	L1421283
Client:	Ransom Consulting, Inc.
	12 Kent Way
	Suite 100
	Byfield, MA 01922-1221
ATTN:	Heather Dudley-Tatman
Phone:	(978) 465-1822
Project Name:	MINUTEMAN H.S.
Project Number:	101.01007.002
Report Date:	09/24/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09241415:26

Project Name:	MINUTEMAN H.S.
Project Number:	101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1421283-01	SB103-S2-091214	SOIL	LINCOLN/LEXINGTON	09/12/14 13:29	09/16/14
L1421283-02	SB104-S2-091214	SOIL	LINCOLN/LEXINGTON	09/12/14 13:55	09/16/14
L1421283-03	SB105-S2-091214	SOIL	LINCOLN/LEXINGTON	09/12/14 14:37	09/16/14
L1421283-04	SB106-S2-091314	SOIL	LINCOLN/LEXINGTON	09/13/14 08:10	09/16/14
L1421283-05	SB107-S2-091314	SOIL	LINCOLN/LEXINGTON	09/13/14 08:33	09/16/14
L1421283-06	SB108-S2-091314	SOIL	LINCOLN/LEXINGTON	09/13/14 09:03	09/16/14
L1421283-07	SB109-S2-091314	SOIL	LINCOLN/LEXINGTON	09/13/14 10:11	09/16/14
L1421283-08	SB110-S2-091314	SOIL	LINCOLN/LEXINGTON	09/13/14 11:15	09/16/14

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421283

Report Date: 09/24/14

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number: L1421283 Report Date: 09/24/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

Case Narrative (continued)

MCP Related Narratives

EPH

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/24/14

ORGANICS

PETROLEUM HYDROCARBONS

				Se	erial_No:092	241415:26
Project Name:	MINUTEMAN H.S.			Lab Num	ber:	L1421283
Project Number:	101.01007.002			Report D	ate:	09/24/14
-		SAMPLE RE	SULTS	•		
Lab ID:	L1421283-01			Date Colle		09/12/14 13:29
Client ID:	SB103-S2-091214			Date Rece		09/16/14
Sample Location				Field Prep:		Not Specified
Matrix:	Soil					
Analytical Metho Analytical Date:	d: 100,VPH-04-1.1 09/23/14 12:03					
Analyst:	BS					
Percent Solids:	91%					
	Q	uality Control Ir	nformation			
Condition of sample r	eceived:				Satisfactory	
Sample Temperature					Received on lo	
Were samples receive	ed in methanol?				Covering the \$ 1:1 +/- 25%	Soil
Methanol ratio:					1.1 +/- 23%	
Parameter		Result	Qualifier Units	RL	MDL	Dilution Facto
Volatile Petroleu	m Hydrocarbons - Westbor	ough Lab				
C5-C8 Aliphatics		ND	mg/kg	3.33		1
C9-C12 Aliphatics		ND	mg/kg	3.33		1
C9-C10 Aromatics		ND	mg/kg	3.33		1
C5-C8 Aliphatics, Adj	usted	ND	mg/kg	3.33		1
C9-C12 Aliphatics, Ac	ljusted	ND	mg/kg	3.33		1
Benzene		ND	mg/kg	0.133		1
Toluene		ND	mg/kg	0.133		1
Ethylbenzene		ND	mg/kg	0.133		1
p/m-Xylene		ND	mg/kg	0.133		1
o-Xylene		ND	mg/kg	0.133		1
Methyl tert butyl ether		ND ND	mg/kg	0.067		1
Naphthalene		UN	mg/kg	0.266		1
S	urrogate	% Recovery	Qualifier	Acceptance Criteria		
- 2	5-Dibromotoluene-PID	89		70-130		
2	5-Dibromotoluene-FID	93		70-130		

			Serial_No:0	9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-01 SB103-S2-091214 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/23/14 20:37 AR 91%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/12/14 13:29 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14

Quality	Control	Information	

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		mg/kg	6.98		1		
C19-C36 Aliphatics	52.7		mg/kg	6.98		1		
C11-C22 Aromatics	53.6		mg/kg	6.98		1		
C11-C22 Aromatics, Adjusted	53.6		mg/kg	6.98		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	56		40-140	
o-Terphenyl	87		40-140	
2-Fluorobiphenyl	109		40-140	
2-Bromonaphthalene	101		40-140	

Project Name:	MINUTEMAN H.S.			Lab Numb	per:	L1421283
Project Number:	101.01007.002			Report Da	ate:	09/24/14
		SAMPLE RES	SULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-02 SB104-S2-091214 LINCOLN/LEXINGTON Soil 100,VPH-04-1.1 09/23/14 12:05 BS 97%			Date Collect Date Receiv Field Prep:		09/12/14 13:55 09/16/14 Not Specified
	G	Quality Control In	formation			
Condition of sample rece					atisfactory	
Sample Temperature up					Received on I	
Were samples received i	in methanol?				overing the	5011
Methanol ratio:				1	:1 +/- 25%	
Parameter			Qualifier Units	RL	.1 +/- 25% MDL	Dilution Facto
Parameter	Hydrocarbons - Westbo		Qualifier Units			Dilution Facto
Parameter	Hydrocarbons - Westbo		Qualifier Units mg/kg			Dilution Facto
Parameter Volatile Petroleum C5-C8 Aliphatics	Hydrocarbons - Westbo	rough Lab		RL	MDL	
Parameter Volatile Petroleum	Hydrocarbons - Westbo	rough Lab _{ND}	mg/kg	RL 2.55	MDL 	1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics		rough Lab ND ND	mg/kg mg/kg	RL 2.55 2.55	MDL 	1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics	ed	rough Lab ND ND ND	mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55	MDL 	1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust	ed	rough Lab ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55	MDL 	1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust	ed	rough Lab ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 2.55 0.102 0.102	MDL 	1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102	MDL 	1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102 0.102 0.102	MDL 	1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102 0.102 0.102 0.102 0.102	MDL 	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene Methyl tert butyl ether	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102	MDL 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102 0.102 0.102 0.102 0.102	MDL -	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene o-Xylene Methyl tert butyl ether Naphthalene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102 0.102 0.102 0.102 0.102 0.102 0.102 0.102	MDL -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatic	ed sted	rough Lab ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 2.55 2.55 2.55 2.55 2.55 0.102	MDL -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Serial_No:09241415:26

			Serial_No:09241415:26			
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283		
Project Number:	101.01007.002		Report Date:	09/24/14		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-02 SB104-S2-091214 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/24/14 10:39 SR 97%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/12/14 13:55 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14		

Quality Control Information				
Condition of sample received:	Satisfactory			
Sample Temperature upon receipt:	Received on Ice			
Sample Extraction method:	Extracted Per the Method			

Result Qualifier Units RL MDL **Dilution Factor** Parameter Extractable Petroleum Hydrocarbons - Westborough Lab C9-C18 Aliphatics ND mg/kg 6.81 1 ---C19-C36 Aliphatics ND 6.81 1 mg/kg ---C11-C22 Aromatics 67.0 mg/kg 6.81 1 --C11-C22 Aromatics, Adjusted 45.6 mg/kg 6.81 1 --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	72		40-140	
o-Terphenyl	76		40-140	
2-Fluorobiphenyl	90		40-140	
2-Bromonaphthalene	83		40-140	

					Serial_No:09241415:26			
Project Name:	MINUTEMAN H.S.				Lab Nun	nber:	L1421283	3
Project Number:	101.01007.002				Report D	Date:	09/24/14	
-		SAMPLE RE	SULTS					
Lab ID:	L1421283-03				Date Colle		09/12/14	
Client ID:	SB105-S2-091214				Date Rece		09/16/14	
Sample Location:	LINCOLN/LEXINGTON				Field Prep		Not Spec	ified
Matrix:	Soil 100,VPH-04-1.1							
Analytical Method: Analytical Date:	09/23/14 12:46							
Analyst:	BS							
Percent Solids:	95%							
		ality Control I	nformatio	on				
Condition of sample rece						Satisfactory	100	
Sample Temperature up Were samples received						Received on Covering the		
Methanol ratio:						1:1.4	301	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution	Factor
Volatile Petroleum	Hydrocarbons - Westbord	ough Lab						
C5-C8 Aliphatics		ND		mg/kg	2.09			1
C9-C12 Aliphatics		ND		mg/kg	2.09			1
C9-C10 Aromatics		ND		mg/kg	2.09			1
C5-C8 Aliphatics, Adjust	ted	ND		mg/kg	2.09			1
C9-C12 Aliphatics, Adjust	sted	ND		mg/kg	2.09			1
Benzene		ND		mg/kg	0.084			1
Toluene		ND		mg/kg	0.084			1
Ethylbenzene		ND		mg/kg	0.084			1
p/m-Xylene		ND		mg/kg	0.084			1
o-Xylene		ND		mg/kg	0.084			1
Methyl tert butyl ether		ND		mg/kg	0.042			1
Naphthalene		ND		mg/kg	0.168			1
Surr	rogate	% Recovery	Qua	lifier	Acceptance Criteria			
2.5-1	Dibromotoluene-PID	122			70-130		_	
	Dibromotoluene-FID	122			70-130			
,		121						

			Serial_No:0	9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-03 SB105-S2-091214 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/23/14 22:11 AR 95%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/12/14 14:37 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14

Quality Control	I Information
-----------------	---------------

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		mg/kg	6.88		1		
C19-C36 Aliphatics	ND		mg/kg	6.88		1		
C11-C22 Aromatics	ND		mg/kg	6.88		1		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.88		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	72		40-140	
o-Terphenyl	86		40-140	
2-Fluorobiphenyl	110		40-140	
2-Bromonaphthalene	101		40-140	

			Serial_No:09241415:26		
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283	
Project Number:	101.01007.002		Report Date:	09/24/14	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-04 SB106-S2-091314 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/23/14 22:58 AR 92%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/13/14 08:10 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14	

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	b				
C9-C18 Aliphatics	ND		mg/kg	7.02		1
C19-C36 Aliphatics	ND		mg/kg	7.02		1
C11-C22 Aromatics	ND		mg/kg	7.02		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.02		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	65		40-140	
o-Terphenyl	67		40-140	
2-Fluorobiphenyl	86		40-140	
2-Bromonaphthalene	79		40-140	

			Serial_No:09241415:26		
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283	
Project Number:	101.01007.002		Report Date:	09/24/14	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-05 SB107-S2-091314 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/23/14 23:46 AR 95%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/13/14 08:33 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14	

Quality Control Information

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		mg/kg	6.77		1	
C19-C36 Aliphatics	ND		mg/kg	6.77		1	
C11-C22 Aromatics	ND		mg/kg	6.77		1	
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.77		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	78		40-140	
o-Terphenyl	92		40-140	
2-Fluorobiphenyl	106		40-140	
2-Bromonaphthalene	98		40-140	

			Serial_No:09241415:26		
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283	
Project Number:	101.01007.002		Report Date:	09/24/14	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-06 SB108-S2-091314 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/24/14 00:32 AR 94%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/13/14 09:03 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14	

Condition of sample received: Sample Temperature upon receipt: Sample Extraction method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Extractable Petroleum Hydrocarbons - Westborough Lab							
C9-C18 Aliphatics	ND		mg/kg	7.04		1	
C19-C36 Aliphatics	ND		mg/kg	7.04		1	
C11-C22 Aromatics	ND		mg/kg	7.04		1	
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.04		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	66		40-140	
o-Terphenyl	61		40-140	
2-Fluorobiphenyl	89		40-140	
2-Bromonaphthalene	80		40-140	

			Serial_No:09241415:26		
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283	
Project Number:	101.01007.002		Report Date:	09/24/14	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-07 SB109-S2-091314 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/24/14 01:19 AR 95%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/13/14 10:11 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14	

Q	uality Control Information
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice

Sample Extraction method:

Received on Ice Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ns - Westborough La	ab				
C9-C18 Aliphatics	ND		mg/kg	6.63		1
C19-C36 Aliphatics	ND		mg/kg	6.63		1
C11-C22 Aromatics	ND		mg/kg	6.63		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.63		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	71		40-140	
o-Terphenyl	77		40-140	
2-Fluorobiphenyl	95		40-140	
2-Bromonaphthalene	89		40-140	

Serial_No:09241415:26							
Project Name:	MINUTEMAN H.S.				Lab Num	ber:	L1421283
Project Number:	101.01007.002				Report D	ate:	09/24/14
•		SAMPLE RE	SULTS		•		
Lab ID:	L1421283-08				Date Collect	cted:	09/13/14 11:15
Client ID:	SB110-S2-091314				Date Recei		09/16/14
Sample Location:	LINCOLN/LEXINGTON				Field Prep:		Not Specified
Matrix: Analytical Method:	Soil 100,VPH-04-1.1						
Analytical Date:	09/23/14 13:27						
Analyst:	BS						
Percent Solids:	88%						
		ality Control I	nformation				
Condition of sample rece						Satisfactory	
Sample Temperature up	•					Received on I	
Were samples received Methanol ratio:	in methanol?					Covering the 1:1.3	Soil
						1.1.3	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbord	ough Lab					
C5-C8 Aliphatics		ND	r	ng/kg	2.61		1
C9-C12 Aliphatics		ND	r	ng/kg	2.61		1
C9-C10 Aromatics		ND	r	ng/kg	2.61		1
C5-C8 Aliphatics, Adjust	ted	ND	r	ng/kg	2.61		1
C9-C12 Aliphatics, Adju	sted	ND		ng/kg	2.61		1
Benzene		ND		ng/kg	0.104		1
Toluene		ND		ng/kg	0.104		1
Ethylbenzene		ND		ng/kg	0.104		1
p/m-Xylene		ND		ng/kg	0.104		1
o-Xylene		ND		ng/kg	0.104		1
Methyl tert butyl ether		ND		mg/kg	0.052		1
Naphthalene		ND	r	ng/kg	0.209		1
Suri	rogate	% Recovery	Qualifi		Acceptance Criteria		_
2,5-1	Dibromotoluene-PID	152	Q		70-130		
2,5-l	Dibromotoluene-FID	149	Q	!	70-130		

			Serial_No:09241415:26			
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283		
Project Number:	101.01007.002		Report Date:	09/24/14		
		SAMPLE RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-08 SB110-S2-091314 LINCOLN/LEXINGTON Soil 98,EPH-04-1.1 09/24/14 02:07 AR 88%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	09/13/14 11:15 09/16/14 Not Specified EPA 3546 09/19/14 15:35 EPH-04-1 09/22/14		

Quality Control Information				
Condition of sample received:	Satisfactory			
Sample Temperature upon receipt:	Received on Ice			
Sample Extraction method:	Extracted Per the Method			

Result Qualifier Units RL MDL **Dilution Factor** Parameter Extractable Petroleum Hydrocarbons - Westborough Lab C9-C18 Aliphatics ND mg/kg 7.33 1 ---C19-C36 Aliphatics ND 7.33 1 mg/kg ---C11-C22 Aromatics 19.7 mg/kg 7.33 1 --C11-C22 Aromatics, Adjusted 14.2 mg/kg 7.33 1 --

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	51		40-140	
o-Terphenyl	77		40-140	
2-Fluorobiphenyl	97		40-140	
2-Bromonaphthalene	90		40-140	

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	98,EPH-04-1.1
Analytical Date:	09/23/14 13:38
Analyst:	AR

Extraction Method:EPA 3546Extraction Date:09/19/14 15:35Cleanup Method:EPH-04-1Cleanup Date:09/22/14

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbon	s - Westboro	ugh Lab fo	or sample(s):	01-08	Batch: WG723652-1
C9-C18 Aliphatics	ND		mg/kg	6.36	
C19-C36 Aliphatics	ND		mg/kg	6.36	
C11-C22 Aromatics	ND		mg/kg	6.36	
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.36	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
	70		40.440
Chloro-Octadecane	73		40-140
o-Terphenyl	71		40-140
2-Fluorobiphenyl	88		40-140
2-Bromonaphthalene	80		40-140

Project Name:	MINUTEMAN H.S.	Lab Number:	L1421283
Project Number:	101.01007.002	Report Date:	09/24/14

Method Blank Analysis Batch Quality Control

Analytical Method:100,VPH-04-1.1Analytical Date:09/23/14 10:57Analyst:BS

arameter	Result	Qualifier	Units		RL	MDL	
olatile Petroleum Hydrocarbor	ns - Westboroug	h Lab for s	ample(s):	01	Batch:	WG724515-3	
C5-C8 Aliphatics	ND		mg/kg	2	.67		
C9-C12 Aliphatics	ND		mg/kg	2	.67		
C9-C10 Aromatics	ND		mg/kg	2	.67		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2	.67		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2	.67		
Benzene	ND		mg/kg	0.	107		
Toluene	ND		mg/kg	0.	107		
Ethylbenzene	ND		mg/kg	0.	107		
p/m-Xylene	ND		mg/kg	0.	107		
o-Xylene	ND		mg/kg	0.	107		
Methyl tert butyl ether	ND		mg/kg	0.	053		
Naphthalene	ND		mg/kg	0.	213		

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	71		70-130				
2,5-Dibromotoluene-FID	74		70-130				

Project Name:	MINUTEMAN H.S.	Lab Number:	L1421283
Project Number:	101.01007.002	Report Date:	09/24/14

Method Blank Analysis Batch Quality Control

Analytical Method:100,VPH-04-1.1Analytical Date:09/23/14 11:24Analyst:BS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Petroleum Hydrocarbon	s - Westborougł	n Lab for sample(s):	02-03,08	Batch: WG724521-3
C5-C8 Aliphatics	ND	mg/kg	2.67	
C9-C12 Aliphatics	ND	mg/kg	2.67	
C9-C10 Aromatics	ND	mg/kg	2.67	
C5-C8 Aliphatics, Adjusted	ND	mg/kg	2.67	
C9-C12 Aliphatics, Adjusted	ND	mg/kg	2.67	
Benzene	ND	mg/kg	0.107	
Toluene	ND	mg/kg	0.107	
Ethylbenzene	ND	mg/kg	0.107	
p/m-Xylene	ND	mg/kg	0.107	
o-Xylene	ND	mg/kg	0.107	
Methyl tert butyl ether	ND	mg/kg	0.053	
Naphthalene	ND	mg/kg	0.213	

	Accept				
Surrogate	%Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	101		70-130		
2,5-Dibromotoluene-FID	98		70-130		

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons -	Westborough Lab Asso	ciated sample(s): 01-08	Batch: WG723652-2 WG723	652-3	
C9-C18 Aliphatics	75	67	40-140	11	25
C19-C36 Aliphatics	83	73	40-140	13	25
C11-C22 Aromatics	86	84	40-140	2	25
Naphthalene	72	65	40-140	10	25
2-Methylnaphthalene	79	73	40-140	8	25
Acenaphthylene	75	71	40-140	5	25
Acenaphthene	75	72	40-140	4	25
Fluorene	80	76	40-140	5	25
Phenanthrene	82	78	40-140	5	25
Anthracene	80	77	40-140	4	25
Fluoranthene	82	78	40-140	5	25
Pyrene	83	79	40-140	5	25
Benzo(a)anthracene	78	74	40-140	5	25
Chrysene	82	78	40-140	5	25
Benzo(b)fluoranthene	83	82	40-140	1	25
Benzo(k)fluoranthene	77	73	40-140	5	25
Benzo(a)pyrene	80	77	40-140	4	25
Indeno(1,2,3-cd)Pyrene	60	57	40-140	5	25
Dibenzo(a,h)anthracene	75	71	40-140	5	25
Benzo(ghi)perylene	76	72	40-140	5	25
Nonane (C9)	53	44	30-140	19	25

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
ractable Petroleum Hydrocarbo	ns - Westborough Lab Ass	ociated sample(s): 01-08	Batch: WG723652-2 WG72	3652-3	
Decane (C10)	60	51	40-140	16	25
Dodecane (C12)	68	60	40-140	13	25
Tetradecane (C14)	72	65	40-140	10	25
Hexadecane (C16)	75	68	40-140	10	25
Octadecane (C18)	76	69	40-140	10	25
Nonadecane (C19)	78	70	40-140	11	25
Eicosane (C20)	78	70	40-140	11	25
Docosane (C22)	79	70	40-140	12	25
Tetracosane (C24)	79	71	40-140	11	25
Hexacosane (C26)	80	71	40-140	12	25
Octacosane (C28)	78	69	40-140	12	25
Triacontane (C30)	82	72	40-140	13	25
Hexatriacontane (C36)	75	66	40-140	13	25

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	63		22	Q	40-140	
o-Terphenyl	81		76		40-140	
2-Fluorobiphenyl	89		95		40-140	
2-Bromonaphthalene	81		88		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Petroleum Hydrocarbons - Wes	stborough Lab Associ	ated sample(s):	01 Batch:	WG724515-1	WG724515-2			
C5-C8 Aliphatics	99		100		70-130	1		25
C9-C12 Aliphatics	99		100		70-130	1		25
C9-C10 Aromatics	93		94		70-130	1		25
Benzene	99		100		70-130	1		25
Toluene	96		97		70-130	1		25
Ethylbenzene	101		102		70-130	1		25
p/m-Xylene	96		97		70-130	1		25
o-Xylene	97		98		70-130	1		25
Methyl tert butyl ether	102		104		70-130	2		25
Naphthalene	89		93		70-130	5		25
1,2,4-Trimethylbenzene	93		94		70-130	1		25
Pentane	108		110		70-130	2		25
2-Methylpentane	100		101		70-130	1		25
2,2,4-Trimethylpentane	102		103		70-130	1		25
n-Nonane	93		94		30-130	1		25
n-Decane	100		100		70-130	0		25
n-Butylcyclohexane	106		108		70-130	2		25

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westbord	ough Lab Associa	ated sample(s	s): 01 Batch:	WG724515-1	WG724515-2				

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	78		80		70-130	
2,5-Dibromotoluene-FID	82		84		70-130	

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
blatile Petroleum Hydrocarbons - W	/estborough Lab Associa	ated sample(s):	02-03,08 E	Batch: WG7	724521-1 WG724	521-2		
C5-C8 Aliphatics	128		124		70-130	3		25
C9-C12 Aliphatics	122		121		70-130	1		25
C9-C10 Aromatics	112		111		70-130	1		25
Benzene	125		122		70-130	2		25
Toluene	121		119		70-130	2		25
Ethylbenzene	125		123		70-130	2		25
p/m-Xylene	125		124		70-130	1		25
o-Xylene	125		124		70-130	1		25
Methyl tert butyl ether	122		122		70-130	0		25
Naphthalene	105		108		70-130	3		25
1,2,4-Trimethylbenzene	112		111		70-130	1		25
Pentane	130		126		70-130	3		25
2-Methylpentane	128		124		70-130	3		25
2,2,4-Trimethylpentane	125		123		70-130	2		25
n-Nonane	120		119		30-130	1		25
n-Decane	122		120		70-130	2		25
n-Butylcyclohexane	122		121		70-130	1		25

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westbord	ough Lab Associa	ited sample(s)	: 02-03,08 B	atch: WG7	24521-1 WG72452	21-2			

Surrogate	LCS %Recovery Qual		LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	112		112		70-130	
2,5-Dibromotoluene-FID	109		109		70-130	

PCBS

			Serial_No:0	9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-03		Date Collected:	09/12/14 14:37
Client ID:	SB105-S2-091214		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8082		Extraction Date:	09/19/14 20:31
Analytical Date:	09/20/14 21:07		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	09/20/14
Percent Solids:	95%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/20/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
MCP Polychlorinated Biphenyls - Westborough Lab										
Areeler 1010				24.2		4	٨			
Aroclor 1016	ND		ug/kg	34.3		1	A			
Aroclor 1221	ND		ug/kg	34.3		1	А			
Aroclor 1232	ND		ug/kg	34.3		1	А			
Aroclor 1242	ND		ug/kg	34.3		1	А			
Aroclor 1248	ND		ug/kg	34.3		1	А			
Aroclor 1254	ND		ug/kg	34.3		1	А			
Aroclor 1260	ND		ug/kg	34.3		1	А			
Aroclor 1262	ND		ug/kg	34.3		1	А			
Aroclor 1268	ND		ug/kg	34.3		1	А			
PCBs, Total	ND		ug/kg	34.3		1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	А
Decachlorobiphenyl	58		30-150	А
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В
Decachlorobiphenyl	67		30-150	В

			Serial_No:()9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-04 SB106-S2-091314 LINCOLN/LEXINGTON Soil 97,8082 09/20/14 21:20 JW 92%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method: Cleanup Date: Cleanup Method: Cleanup Date:	09/13/14 08:10 09/16/14 Not Specified EPA 3546 09/19/14 20:31 EPA 3665A 09/20/14 EPA 3660B 09/20/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
MCP Polychlorinated Biphenyls - Westborough Lab										
Aroclor 1016	ND		ug/kg	34.4		1	A			
Aroclor 1221	ND		ug/kg	34.4		1	А			
Aroclor 1232	ND		ug/kg	34.4		1	А			
Aroclor 1242	ND		ug/kg	34.4		1	А			
Aroclor 1248	ND		ug/kg	34.4		1	А			
Aroclor 1254	ND		ug/kg	34.4		1	А			
Aroclor 1260	ND		ug/kg	34.4		1	А			
Aroclor 1262	ND		ug/kg	34.4		1	А			
Aroclor 1268	ND		ug/kg	34.4		1	А			
PCBs, Total	ND		ug/kg	34.4		1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		30-150	А
Decachlorobiphenyl	59		30-150	А
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	67		30-150	В

			Serial_No:0)9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-05		Date Collected:	09/13/14 08:33
Client ID:	SB107-S2-091314		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8082		Extraction Date:	09/19/14 20:31
Analytical Date:	09/20/14 21:32		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	09/20/14
Percent Solids:	95%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/20/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
MCP Polychlorinated Biphenyls - Westborough Lab										
Aroclor 1016	ND		ug/kg	35.0		1	A			
Aroclor 1221	ND		ug/kg	35.0		1	А			
Aroclor 1232	ND		ug/kg	35.0		1	А			
Aroclor 1242	ND		ug/kg	35.0		1	А			
Aroclor 1248	ND		ug/kg	35.0		1	А			
Aroclor 1254	ND		ug/kg	35.0		1	А			
Aroclor 1260	ND		ug/kg	35.0		1	А			
Aroclor 1262	ND		ug/kg	35.0		1	А			
Aroclor 1268	ND		ug/kg	35.0		1	А			
PCBs, Total	ND		ug/kg	35.0		1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	А
Decachlorobiphenyl	62		30-150	А
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В
Decachlorobiphenyl	69		30-150	В

			Serial_No:()9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1421283-06 SB108-S2-091314 LINCOLN/LEXINGTON Soil 97,8082 09/20/14 21:44 JW 94%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date: Cleanup Method: Cleanup Date: Cleanup Method:	09/13/14 09:03 09/16/14 Not Specified EPA 3546 09/19/14 20:31 EPA 3665A 09/20/14 EPA 3660B
			Cleanup Date:	09/20/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
MCP Polychlorinated Biphenyls - Westborough Lab											
Aroclor 1016	ND		ug/kg	33.8		1	A				
Aroclor 1221	ND		ug/kg	33.8		1	А				
Aroclor 1232	ND		ug/kg	33.8		1	А				
Aroclor 1242	ND		ug/kg	33.8		1	А				
Aroclor 1248	ND		ug/kg	33.8		1	А				
Aroclor 1254	ND		ug/kg	33.8		1	А				
Aroclor 1260	ND		ug/kg	33.8		1	А				
Aroclor 1262	ND		ug/kg	33.8		1	А				
Aroclor 1268	ND		ug/kg	33.8		1	А				
PCBs, Total	ND		ug/kg	33.8		1	А				

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А			
Decachlorobiphenyl	64		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В			
Decachlorobiphenyl	76		30-150	В			

			Serial_No:0	9241415:26
Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-07		Date Collected:	09/13/14 10:11
Client ID:	SB109-S2-091314		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8082		Extraction Date:	09/19/14 20:31
Analytical Date:	09/20/14 21:57		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	09/20/14
Percent Solids:	95%		Cleanup Method:	EPA 3660B
			Cleanup Date:	09/20/14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
MCP Polychlorinated Biphenyls - Westborough Lab										
Aradar 1016	ND		ug/kg	22.4		1	۸			
Aroclor 1016			ug/kg	33.1		1	A			
Aroclor 1221	ND		ug/kg	33.1		1	A			
Aroclor 1232	ND		ug/kg	33.1		1	А			
Aroclor 1242	ND		ug/kg	33.1		1	А			
Aroclor 1248	ND		ug/kg	33.1		1	А			
Aroclor 1254	ND		ug/kg	33.1		1	А			
Aroclor 1260	ND		ug/kg	33.1		1	А			
Aroclor 1262	ND		ug/kg	33.1		1	А			
Aroclor 1268	ND		ug/kg	33.1		1	А			
PCBs, Total	ND		ug/kg	33.1		1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	A
Decachlorobiphenyl	61		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	68		30-150	В

L1421283

09/24/14

Lab Number:

Report Date:

09/20/14

Project Name:	MINUTEMAN H.S.
Project Number:	101.01007.002

Method Blank Analysis Batch Quality Control

Analytical Method:	9
Analytical Date:	0
Analyst:	٦

97,8082)9/20/14 22:59 JW

Extraction Method:	EPA 3546
Extraction Date:	09/19/14 20:31
Cleanup Method:	EPA 3665A
Cleanup Date:	09/20/14
Cleanup Method:	EPA 3660B
Cleanup Date:	09/20/14

Parameter	Result	Qualifier	Units	RL	-	MDL	Column
MCP Polychlorinated Biphenyls -	Westborough	Lab for sa	mple(s):	03-07	Batch:	WG723720)-1
Aroclor 1016	ND		ug/kg	31.	6		А
Aroclor 1221	ND		ug/kg	31.	6		А
Aroclor 1232	ND		ug/kg	31.	6		А
Aroclor 1242	ND		ug/kg	31.	6		А
Aroclor 1248	ND		ug/kg	31.	6		А
Aroclor 1254	ND		ug/kg	31.	6		А
Aroclor 1260	ND		ug/kg	31.	6		А
Aroclor 1262	ND		ug/kg	31.	6		А
Aroclor 1268	ND		ug/kg	31.	6		А
PCBs, Total	ND		ug/kg	31.	6		А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		30-150	A
Decachlorobiphenyl	56		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	69		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

	LCS		LCSD	%	Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
MCP Polychlorinated Biphenyls - Westb	orough Lab Associate	ed sample(s):	03-07 Batch:	WG723720-2	WG723720-3				
Aroclor 1016	84		82		40-140	2		30	А
Aroclor 1260	90		88		40-140	2		30	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		65		30-150	А
Decachlorobiphenyl	59		59		30-150	А
2,4,5,6-Tetrachloro-m-xylene	74		75		30-150	В
Decachlorobiphenyl	71		68		30-150	В

INORGANICS & MISCELLANEOUS

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-01		Date Collected:	09/12/14 13:29
Client ID:	SB103-S2-091214		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	i i i i i i i i i i i i i i i i i i i								
Solids, Total	91.2		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002	Lab Number: Report Date:	L1421283 09/24/14
	SAMPLE R	ESULTS	
Lab ID: Client ID: Sample Location: Matrix:	L1421283-02 SB104-S2-091214 LINCOLN/LEXINGTON Soil	Date Collected: Date Received: Field Prep:	09/12/14 13:55 09/16/14 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	96.6		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002		Lab Number: Report Date:	L1421283 09/24/14
	SAMPL	E RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1421283-03 SB105-S2-091214 LINCOLN/LEXINGTON Soil		Date Collected: Date Received: Field Prep:	09/12/14 14:37 09/16/14 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	95.1		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-04		Date Collected:	09/13/14 08:10
Client ID:	SB106-S2-091314		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	92.0		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-05		Date Collected:	09/13/14 08:33
Client ID:	SB107-S2-091314		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lat)								
Solids, Total	94.6		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421283
Project Number:	101.01007.002		Report Date:	09/24/14
		SAMPLE RESULTS		
Lab ID:	L1421283-06		Date Collected:	09/13/14 09:03
Client ID:	SB108-S2-091314		Date Received:	09/16/14
Sample Location:	LINCOLN/LEXINGTON		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Nestborough Lab)								
Solids, Total	93.8		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002		Lab Number: Report Date:	L1421283 09/24/14
	S	AMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1421283-07 SB109-S2-091314 LINCOLN/LEXINGTON Soil		Date Collected: Date Received: Field Prep:	09/13/14 10:11 09/16/14 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	95.4		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002	Lab Number: Report Date:	L1421283 09/24/14
	SAMPLE	RESULTS	
Lab ID: Client ID: Sample Location: Matrix:	L1421283-08 SB110-S2-091314 LINCOLN/LEXINGTON Soil	Date Collected: Date Received: Field Prep:	09/13/14 11:15 09/16/14 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	88.2		%	0.100	NA	1	-	09/17/14 20:21	30,2540G	RT

20

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002	Lal	b Duplicate Anal Batch Quality Contro			ab Number eport Date	L1421203
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab Associated sa	mple(s): 01-08 QC Batch	n ID: WG722980-1 Q0	C Sample: L142	21283-01	Client ID: S	SB103-S2-091214

91.4

%

0

91.2

Solids, Total

Serial_No:09241415:26

Lab Number: L1421283 **Report Date:** 09/24/14

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Information

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1421283-01A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	VPH-DELUX-10(28)
L1421283-01B	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	EPH-10(14),TS(7)
L1421283-02A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	VPH-DELUX-10(28)
L1421283-02B	Amber 120ml unpreserved	А	N/A	4.4	Υ	Absent	EPH-10(14),TS(7)
L1421283-03A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	VPH-DELUX-10(28)
L1421283-03B	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	EPH-10(14),MCP-8082- 10(365),TS(7)
L1421283-04A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7)
L1421283-04B	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	EPH-10(14),MCP-8082-10(365)
L1421283-05A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7)
L1421283-05B	Amber 120ml unpreserved	А	N/A	4.4	Υ	Absent	EPH-10(14),MCP-8082-10(365)
L1421283-06A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7)
L1421283-06B	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	EPH-10(14),MCP-8082-10(365)
L1421283-07A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7)
L1421283-07B	Amber 120ml unpreserved	А	N/A	4.4	Υ	Absent	EPH-10(14),MCP-8082-10(365)
L1421283-08A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	VPH-DELUX-10(28)
L1421283-08B	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	EPH-10(14),TS(7)

Serial_No:09241415:26

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421283

Report Date: 09/24/14

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Serial_No:09241415:26

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421283 Report Date: 09/24/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

 Lab Number:
 L1421283

 Report Date:
 09/24/14

REFERENCES

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 100 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

						1-150 - 10 - 20				streethin was		o 1.1	Serial_No	:092414	115:26	
Агрна	CHAIN O		DY	PAGE	_OF	Date Re	c'd in La	ıb: 9	16-1	y Y		ALPH/	A Job #: (_	ิ่นว	1283	
Watte Class Character 8 Walkup Drive	320 Forbes Blvd	Project Informat	ion			Report	Inform	ation - D	ata De	liverab	es	Billing	Information	1		
Westboro, MA 0 Tel: 508-898-92	20 Foldes Bive 11581 Mansfield, MA 02048 220 Tel: 508-822-9300	Project Name: M(nten	rac P	l.S.) D ADE	x		IL.		۹ (3 Same	as Client info	PO #:	7050	,
Client Informatio		Project Location:	vol-	1000	<u>}</u>	Regula	tory Re	quireme	nts &	Proj	ect Inf	ormati	on Requiren	nents		
Client: Consor	Consulting	Project #: 01,0	$m \sim 1$	$-\frac{1}{1}$		j⊠tYes ⊑	No MA	MCP Anal	ytical M	ethods	0000		s Ø No CTF d for MCP Ino		rtical Metho	ds
Address:)	able (Jeloo	Project Manager:	a. h	<u>, D.</u> 10	- ጥ ነ	⊔ Yes A≊ □ Yes DŽ							PH with Targe			
B. Front I	MA 01477	ALPHA Quote #:	erre	r willy	-iotania			DES RGP ed Program	n				Criteria			
Phone: 974-6	Consulting nt Way, Suite 100 MA 01422 H65-1422	Turn-Around Tin	ne			- Consi				11	1	1 1		/ /		
Email: holveles	@ronsomenv.com			aly confirmed if pre-a	pprovedi)	9		METALS: DRCRAS DMCP 14 DRCP 15 EPH: DRanges R DRCRAB DRCRAB	VPH: DRanges & Targets D Ranges Only	tes only	/_/					
	roject Information:	Date Due: 9-2				ANAL YSIS	– 524.2 РАН	METALS: LIRCRAS LINCP 14 EPH: LIRanges R _ LIRCRAB	B Ran	5082	U Fingerprint	//			/IPLE INFO	T O T A
· .						D 624		2 2 4	'arger Targer		5//			1	<i>ation</i> ield	L #
						. 08	ABN	RCR,	les &	Douant Only		/ /			ab to do	в
							0 / 0 is /	S: D Rang	and and		/ /				se <i>rvation</i> ab to do	O T T
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ction Time	Sample Matrix	Sampler Initials	svo:	METALS: UMCP 10	METAL EPH: L	Han B	HH DO	~//		/ / /	Sample	Comments	L E S
21283-01	SB103-52-091214	4/12/14	1329	Soil	DFM			X	(2
	SB104-52- P91214		1355	Soil	DFM			χ	í 🗌							2
	58105-52-091214		1437		DFM			Xx	١.							7_
	56106-52-09131		,		DAM			λ	χ							2
For The Local States and the second									<u>_</u>							
	SB107-52-041314				DFM			χ	X							
BELLING CARGENERS IN THE ACCURATE	<u>58104-52-091314</u>				DFM			$ \chi $	<u></u> Σ							2
6 / 2	<u>SB109-52-091314</u>	- 9/13/14		501	DFM			λ								2
j Jø	56110-52-091314	- 9/13/14	1115	Soll	DFM			<u>x</u> /	\							2
					-											
Container Type P= Plastic	<i>Preservative</i> A≂ None			Conta	ainer Type			AV	A							
A= Amber glass V≂ Vial G≃ Glass	B= HCl C≂ HNO₃ D≈ H₂SO₄			Pr	eservative			AF	Á							
B= Bacteria cup C≃ Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinquished By:		Dat	e/Time		Rece	ived By:		-71	Date/T	me	All samples	submitte	t are subier	ctite
E= Encore D≈ BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Tomm			14 1235	1 Vm	110	b/m	· ·		116/1	4123	Alpha's Terr	ns and Co		
	J = NH₄Cl K= Zn Acetate O= Other	SiHA		4/10/1	1 814	ALA	<u>yan</u> In	an	1 <i>L</i>	<u> </u>	1 <u>14 </u> -11-14	1/16	FORM NO: 01-		ar-2012)	
Page 52 of 52	4-1-41			a de la	, , =	/			,	• • • • • • • • • • • • • • • • • • •	_*					

: :+|---:::

.....

dare e

.....

I.

ANALYTICAL REPORT

Lab Number:	L1421763
Client:	Ransom Consulting, Inc.
	12 Kent Way
	Suite 100
	Byfield, MA 01922-1221
ATTN:	Heather Dudley-Tatman
Phone:	(978) 465-1822
Project Name:	MINUTEMAN H.S.
Project Number:	101.01007.002
Report Date:	09/26/14

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09261412:26

Project Name:	MINUTEMAN H.S.
Project Number:	101.01007.002

 Lab Number:
 L1421763

 Report Date:
 09/26/14

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1421763-01	MW102-W1-091714	WATER	758 MARRETT ROAD	09/17/14 13:59	09/18/14
L1421763-02	MW103-W1-091714	WATER	758 MARRETT ROAD	09/17/14 15:25	09/18/14
L1421763-03	MW104-W1-091714	WATER	758 MARRETT ROAD	09/17/14 16:41	09/18/14
L1421763-04	MW105-W1-091714	WATER	758 MARRETT ROAD	09/17/14 12:36	09/18/14
L1421763-05	MW106-W1-091714	WATER	758 MARRETT ROAD	09/17/14 13:12	09/18/14

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421763

Report Date: 09/26/14

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number: L1421763 Report Date: 09/26/14

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421763

 Report Date:
 09/26/14

Case Narrative (continued)

MCP Related Narratives

EPH

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/26/14

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002				Lab Num Report D		L1421763 09/26/14
		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1421763-01 MW102-W1-091714 758 MARRETT ROAD Water 100,VPH-04-1.1 09/24/14 18:06 BS				Date Colle Date Rece Field Prep:	ived:	09/17/14 13:59 09/18/14 Not Specified
	Q	uality Contr	ol Informatio	on			
Aqueous Preservative: Sample Temperature up	on receipt:					Container Received on Id	ovided Preserved
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbor	ough Lab					
C5-C8 Aliphatics		ND		ug/l	50.0		1
C9-C12 Aliphatics		ND		ug/l	50.0		1
C9-C10 Aromatics		ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjust	ed	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjust	sted	ND		ug/l	50.0		1
Benzene		ND		ug/l	2.00		1
Toluene		ND		ug/l	2.00		1
Ethylbenzene		ND		ug/l	2.00		1
p/m-Xylene		ND		ug/l	2.00		1
o-Xylene							
Methyl tert butyl ether		ND ND		ug/l	2.00 3.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	84		70-130	
2,5-Dibromotoluene-FID	81		70-130	

ug/l

4.00

--

ND

1

Serial_No:09261412:26

Naphthalene

 Serial_No:09261412:26

 MINUTEMAN H.S.
 Lab Number:
 L1421763

 101.01007.002
 Report Date:
 09/26/14

 L1421763-01
 Date Collected:
 09/17/14 13:59

Lab ID:L1421763-01Date Collected:Client ID:MW102-W1-091714Date Received:Sample Location:758 MARRETT ROADField Prep:Matrix:WaterExtraction MethAnalytical Method:98,EPH-04-1.1Extraction Date:Analytical Date:09/25/14 17:08Cleanup Method:Analytical SPSPOlympic 14 14:00	09/23/14 12:08 11: EPH-04-1
Analyst: SR Cleanup Date1:	09/25/14

Quality Control Information	
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserve Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Result	Qualifier	Units	RL	MDL	Dilution Factor
Westborough La	ab				
ND		ug/l	100		1
ND		ug/l	100		1
ND		ug/l	100		1
ND		ug/l	100		1
	Westborough La ND ND ND	Westborough Lab	Westborough Lab ND ug/l ND ug/l ND ug/l	Westborough Lab ug/l 100 ND ug/l 100 ND ug/l 100	Westborough Lab ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100

% Recovery	Qualifier	Acceptance Criteria	
47		40-140	
62		40-140	
75		40-140	
74		40-140	
	47 62 75	47 62 75	% Recovery Qualifier Criteria 47 40-140 62 40-140 75 40-140

Project Name:

Project Number:

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002	SAMPLE	RESULTS		Lab Numb Report Dat		L1421763 09/26/14
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1421763-02 MW103-W1-091714 758 MARRETT ROAD Water 100,VPH-04-1.1 09/24/14 18:45 BS				Date Collecte Date Receive Field Prep:		09/17/14 15:25 09/18/14 Not Specified
	Q	uality Contro	ol Informatio	on			
Aqueous Preservative:					Co	ntainer	vided Preserved
Sample Temperature up	on receipt:				Re	eceived on Ic	e
Sample Temperature up Parameter	on receipt:	Result	Qualifier	Units	Re	ceived on Ic	e Dilution Factor
Parameter	on receipt: Hydrocarbons - Westbor		Qualifier	Units			
Parameter	·		Qualifier	Units ug/l			
Parameter Volatile Petroleum	·	ough Lab	Qualifier		RL	MDL	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics	·	rough Lab	Qualifier	ug/l	RL 50.0	MDL 	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics	Hydrocarbons - Westbor	rough Lab ND ND	Qualifier	ug/l ug/l	RL 50.0 50.0	MDL 	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics	Hydrocarbons - Westbor	rough Lab ND ND ND	Qualifier	ug/l ug/l ug/l	RL 50.0 50.0 50.0	MDL 	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust	Hydrocarbons - Westbor	rough Lab ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0	MDL 	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust	Hydrocarbons - Westbor	rough Lab ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 50.0	MDL 	Dilution Factor
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene	Hydrocarbons - Westbor	rough Lab ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 50.0 2.00	MDL 	Dilution Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene	Hydrocarbons - Westbor	rough Lab ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 50.0 2.00 2.00	MDL 	Dilution Factor 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene	Hydrocarbons - Westbor	rough Lab ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00	MDL 	Dilution Factor 1
Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene	Hydrocarbons - Westbor	rough Lab ND ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00	MDL 	Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	82		70-130	
2,5-Dibromotoluene-FID	81		70-130	

Serial_No:09261412:26

Serial_No:09261412:26 **Project Name:** Lab Number: MINUTEMAN H.S. L1421763 **Project Number:** Report Date: 101.01007.002 09/26/14 SAMPLE RESULTS Lab ID: Date Collected: 09/17/14 15:25 L1421763-02 Client ID: Date Received: MW103-W1-091714 Field Prep: Sample Location: 758 MARRETT ROAD Matrix: Extraction Method: Water Analytical Method: 98,EPH-04-1.1

09/18/14 Not Specified EPA 3510C Extraction Date: 09/23/14 12:08 Cleanup Method1: EPH-04-1 Cleanup Date1: 09/25/14

Quality Control I	nformation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserve Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab								
ND		ug/l	100		1			
ND		ug/l	100		1			
ND		ug/l	100		1			
ND		ug/l	100		1			
	ND ND ND ND	Westborough Lab ND ND ND	ND ug/l ND ug/l ND ug/l ND ug/l	ND ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100	ND ug/l 100 ND ug/l 100 ND ug/l 100 ND ug/l 100			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	69		40-140	
o-Terphenyl	84		40-140	
2-Fluorobiphenyl	82		40-140	
2-Bromonaphthalene	82		40-140	

Analytical Date:

Analyst:

09/25/14 17:53

SR

Project Name: Project Number:				Lab Number: Report Date:		L1421763 09/26/14	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1421763-03 MW104-W1-091714 758 MARRETT ROAD Water 100,VPH-04-1.1 09/24/14 19:24 BS				Date Collecte Date Receive Field Prep:	ed:	09/17/14 16:41 09/18/14 Not Specified
	Q	uality Contro	ol Informatio	on			
Condition of sample rece Aqueous Preservative: Sample Temperature up					Lab Cor	isfactory ooratory Pro ntainer ceived on Ic	vided Preserved e
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	Hydrocarbons - Westbor		Qualifier	Units	RL	MDL	Dilution Factor
	Hydrocarbons - Westbo		Qualifier	Units ug/l	RL 50.0	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbor	rough Lab	Qualifier				
Volatile Petroleum C5-C8 Aliphatics	Hydrocarbons - Westbo	rough Lab	Qualifier	ug/l	50.0	-	1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics		rough Lab ND ND	Qualifier	ug/l ug/l	50.0 50.0		1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics	ed	rough Lab ND ND ND	Qualifier	ug/l ug/l ug/l	50.0 50.0 50.0	 	1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust	ed	rough Lab ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0		1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust	ed	rough Lab ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0		1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene	ed	rough Lab ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 2.00	 	1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene	ed	rough Lab ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00	 	1 1 1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00		1 1 1 1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00		1 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	81		70-130	
2,5-Dibromotoluene-FID	81		70-130	

Serial_No:09261412:26

Serial_No:09261412:26 **Project Name:** Lab Number: MINUTEMAN H.S. L1421763 **Project Number: Report Date:** 101.01007.002 09/26/14 SAMPLE RESULTS Lab ID: Date Collected: 09/17/14 16:41 L1421763-03 Client ID: Date Received: MW104-W1-091714 Field Prep: Sample Location: 758 MARRETT ROAD Extraction Method: Water

Matrix: Analytical Method: 98,EPH-04-1.1 Analytical Date: 09/25/14 18:38 Analyst: SR

09/18/14 Not Specified EPA 3510C Extraction Date: 09/23/14 12:08 Cleanup Method1: EPH-04-1 Cleanup Date1: 09/25/14

Quality Control Information	on
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserv Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	52		40-140	
o-Terphenyl	81		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	78		40-140	

Project Name: Project Number:	MINUTEMAN H.S. 101.01007.002	SAMPLE	RESULTS		Lab Numbe Report Date		L1421763 09/26/14
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1421763-04 MW105-W1-091714 758 MARRETT ROAD Water 100,VPH-04-1.1 09/24/14 20:03 BS				Date Collecte Date Receive Field Prep:	d:	09/17/14 12:36 09/18/14 Not Specified
	Q	uality Contro	ol Informatio	on			
Condition of sample rece Aqueous Preservative: Sample Temperature up					Lab Cor	isfactory oratory Pro ntainer ceived on Ic	vided Preserved
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	Hydrocarbons - Westbor		Qualifier	Units	RL	MDL	Dilution Factor
	Hydrocarbons - Westbor		Qualifier	Units ug/l	RL 50.0	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbor	rough Lab	Qualifier				
Volatile Petroleum C5-C8 Aliphatics	Hydrocarbons - Westbo	rough Lab	Qualifier	ug/l	50.0		1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics		rough Lab ND ND	Qualifier	ug/l ug/l	50.0 50.0		1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics	ed	rough Lab ND ND ND	Qualifier	ug/l ug/l ug/l	50.0 50.0 50.0		1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust	ed	rough Lab ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0		1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust	ed	rough Lab ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0		1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene	ed	rough Lab ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 50.0 2.00		1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene	ed	rough Lab ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00		1 1 1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00		1 1 1 1 1 1 1 1 1 1 1
Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene Toluene Ethylbenzene p/m-Xylene	ed	rough Lab ND ND ND ND ND ND ND ND ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00		1 1 1 1 1 1 1 1 1 1 1 1 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	83		70-130	
2,5-Dibromotoluene-FID	82		70-130	

Serial_No:09261412:26 **Project Name:** Lab Number: MINUTEMAN H.S. L1421763 **Project Number:** Report Date: 101.01007.002 09/26/14 SAMPLE RESULTS Lab ID: Date Collected: 09/17/14 12:36 L1421763-04 Client ID: Date Received: 09/18/14 MW105-W1-091714 Field Prep: Sample Location: 758 MARRETT ROAD Not Specified Matrix: Extraction Method: EPA 3510C Water Analytical Method: 98,EPH-04-1.1 Extraction Date: 09/23/14 12:08 Analytical Date: 09/25/14 19:23 Cleanup Method1: EPH-04-1 Analyst: SR Cleanup Date1: 09/25/14

Quality Control In	nformation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserve Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	57		40-140	
o-Terphenyl	80		40-140	
2-Fluorobiphenyl	83		40-140	
2-Bromonaphthalene	82		40-140	

Project Name:	MINUTEMAN H.S.				Lab Numbe	er:	L1421763					
Project Number:	101.01007.002				Report Dat	e:	09/26/14					
		SAMPLE	RESULTS									
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1421763-05 MW106-W1-091714 758 MARRETT ROAD Water 100,VPH-04-1.1 09/24/14 20:42 BS				Date Collecte Date Receive Field Prep:		09/17/14 13:12 09/18/14 Not Specified					
	Q	auality Contr	ol Informatio	on								
	ived:				Sa	tisfactory						
Condition of sample rece						Aqueous Preservative: Laboratory Provided Preserved						
•						boratory Pro Intainer	wided Preserved					
•					Co							
Aqueous Preservative:					Co	ntainer						
Aqueous Preservative:					Co	ntainer						
Aqueous Preservative:		Result	Qualifier	Units	Co	ntainer						
Aqueous Preservative: Sample Temperature upo Parameter			Qualifier	Units	Co Re	ontainer ceived on Ic	æ					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum	on receipt:		Qualifier		Co Re	ontainer ceived on Ic	æ					
Aqueous Preservative: Sample Temperature upo Parameter	on receipt:	rough Lab	Qualifier	Units ug/l ug/l	Co Re RL	MDL	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics	on receipt:	rough Lab ND	Qualifier	ug/l	Co Re RL 50.0	MDL	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics	on receipt: Hydrocarbons - Westbo	ND 56.0	Qualifier	ug/l ug/l	Co Re RL 50.0 50.0	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND	Qualifier	ug/l ug/l ug/l	Co Re RL 50.0 50.0 50.0	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjuste	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND	Qualifier	ug/l ug/l ug/l ug/l	Co Re RL 50.0 50.0 50.0 50.0 50.0	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND ND	Qualifier	ug/l ug/l ug/l ug/l ug/l	Co Re RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upo Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjust C9-C12 Aliphatics, Adjust Benzene	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND ND 21.9	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l	Co Re 50.0 50.0 50.0 50.0 50.0 50.0 50.0 2.00	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upor Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C12 Aliphatics C5-C8 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND 21.9 ND	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Co Re RL 50.0 50.0 50.0 50.0 50.0 50.0 2.00 2.00	MDL 	Dilution Factor					
Aqueous Preservative: Sample Temperature upor Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C12 Aliphatics, Adjuster C9-C12 Aliphatics, Adjuster C9-C12 Aliphatics, Adjuster C9-C12 Aliphatics, Adjuster Enzene Toluene Ethylbenzene	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND 21.9 ND 3.12	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Co Re RL 50.0 50.0 50.0 50.0 50.0 50.0 2.00 2.00 2.00 2.00	MDL 	e Dilution Factor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Aqueous Preservative: Sample Temperature upor Parameter Volatile Petroleum C5-C8 Aliphatics C9-C12 Aliphatics C9-C10 Aromatics C5-C8 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste C9-C12 Aliphatics, Adjuste Benzene Toluene Ethylbenzene p/m-Xylene	on receipt: Hydrocarbons - Westbo ed	rough Lab ND 56.0 ND ND 21.9 ND 3.12 11.1	Qualifier	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	RL 50.0 50.0 50.0 50.0 50.0 50.0 2.00 2.00	MDL -	20 Dilution Factor 1 1 1 1 1 1 1 1 1 1 1 1 1					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	85		70-130	
2,5-Dibromotoluene-FID	84		70-130	

Serial_No:09261412:26 **Project Name:** Lab Number: MINUTEMAN H.S. L1421763 **Project Number: Report Date:** 101.01007.002 09/26/14 SAMPLE RESULTS Lab ID: Date Collected: 09/17/14 13:12 L1421763-05 Client ID: Date Received: 09/18/14 MW106-W1-091714 Field Prep: Sample Location: 758 MARRETT ROAD Not Specified Extraction Method: EPA 3510C Matrix: Water Analytical Method: 98,EPH-04-1.1 Extraction Date: 09/23/14 12:08 Analytical Date: 09/25/14 20:08 Cleanup Method1: EPH-04-1 Analyst: SR Cleanup Date1: 09/25/14

Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserve Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	45		40-140	
o-Terphenyl	77		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	78		40-140	

Project Name:	MINUTEMAN H.S.		Lab Number:	L1421763
Project Number:	101.01007.002		Report Date:	09/26/14
		Method Blank Analysis		

Batch Quality Control

Analytical Method:	98,EPH-04-1.1
Analytical Date:	09/24/14 13:23
Analyst:	SR

Extraction Method:EPA 3510CExtraction Date:09/23/14 12:08Cleanup Method:EPH-04-1Cleanup Date:09/23/14

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab f	or sample(s):	01-05	Batch: WG724462-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Chloro-Octadecane	64		40-140
o-Terphenyl	83		40-140
2-Fluorobiphenyl	83		40-140
2-Bromonaphthalene	85		40-140

Project Name:	MINUTEMAN H.S.	Lab Number:	L1421763
Project Number:	101.01007.002	Report Date:	09/26/14

Method Blank Analysis Batch Quality Control

Analytical Method:100,VPH-04-1.1Analytical Date:09/24/14 11:34Analyst:BS

Parameter	Result	Qualifier	Units	RL		MDL
olatile Petroleum Hydrocarbo	ns - Westboroug	h Lab for s	ample(s):	01-05	Batch:	WG725160-3
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	83		70-130		
2,5-Dibromotoluene-FID	81		70-130		

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number: L1421763 Report Date: 09/26/14

rameter	LCS %Recovery Quai	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
tractable Petroleum Hydrocarbor	ns - Westborough Lab Associated	I sample(s): 01-05 Batc	h: WG724462-2 WG724	462-3	
C9-C18 Aliphatics	44	50	40-140	13	25
C19-C36 Aliphatics	57	66	40-140	15	25
C11-C22 Aromatics	84	84	40-140	0	25
Naphthalene	66	65	40-140	2	25
2-Methylnaphthalene	70	70	40-140	0	25
Acenaphthylene	66	68	40-140	3	25
Acenaphthene	71	73	40-140	3	25
Fluorene	72	75	40-140	4	25
Phenanthrene	74	79	40-140	7	25
Anthracene	80	85	40-140	6	25
Fluoranthene	76	82	40-140	8	25
Pyrene	78	84	40-140	7	25
Benzo(a)anthracene	76	82	40-140	8	25
Chrysene	81	88	40-140	8	25
Benzo(b)fluoranthene	75	88	40-140	16	25
Benzo(k)fluoranthene	82	83	40-140	1	25
Benzo(a)pyrene	82	89	40-140	8	25
Indeno(1,2,3-cd)Pyrene	66	72	40-140	9	25
Dibenzo(a,h)anthracene	78	85	40-140	9	25
Benzo(ghi)perylene	79	86	40-140	8	25
Nonane (C9)	36	42	30-140	15	25

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number: L1421763 Report Date: 09/26/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons - We	stborough Lab Ass	ociated sample	e(s): 01-05	Batch: W	G724462-2 WG724	462-3		
Decane (C10)	42		48		40-140	13	25	
Dodecane (C12)	53		59		40-140	11	25	
Tetradecane (C14)	56		64		40-140	13	25	
Hexadecane (C16)	59		68		40-140	14	25	
Octadecane (C18)	61		71		40-140	15	25	
Nonadecane (C19)	62		72		40-140	15	25	
Eicosane (C20)	62		72		40-140	15	25	
Docosane (C22)	63		73		40-140	15	25	
Tetracosane (C24)	63		72		40-140	13	25	
Hexacosane (C26)	63		73		40-140	15	25	
Octacosane (C28)	62		71		40-140	14	25	
Triacontane (C30)	65		74		40-140	13	25	
Hexatriacontane (C36)	64		72		40-140	12	25	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	47		68		40-140	
o-Terphenyl	77		82		40-140	
2-Fluorobiphenyl	75		78		40-140	
2-Bromonaphthalene	75		78		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number: L1421763 Report Date: 09/26/14

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
blatile Petroleum Hydrocarbons - V	Vestborough Lab Associa	ated sample(s):	: 01-05 Batch	: WG7251	160-1 WG725160-	2		
C5-C8 Aliphatics	105		98		70-130	7		25
C9-C12 Aliphatics	89		87		70-130	3		25
C9-C10 Aromatics	91		92		70-130	0		25
Benzene	103		100		70-130	3		25
Toluene	104		101		70-130	3		25
Ethylbenzene	104		101		70-130	3		25
p/m-Xylene	100		99		70-130	2		25
o-Xylene	100		99		70-130	1		25
Methyl tert butyl ether	99		100		70-130	1		25
Naphthalene	99		105		70-130	6		25
1,2,4-Trimethylbenzene	91		92		70-130	0		25
Pentane	108		100		70-130	8		25
2-Methylpentane	106		100		70-130	6		25
2,2,4-Trimethylpentane	102		97		70-130	5		25
n-Nonane	93		90		30-130	3		25
n-Decane	82		79		70-130	4		25
n-Butylcyclohexane	94		91		70-130	3		25

Project Name:MINUTEMAN H.S.Project Number:101.01007.002

 Lab Number:
 L1421763

 Report Date:
 09/26/14

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - Westbord	ough Lab Associa	ated sample(s)): 01-05 Batch:	WG7251	160-1 WG725160-2	2			

Surrogate	LCS %Recovery			Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	94		96		70-130	
2,5-Dibromotoluene-FID	92		94		70-130	

Lab Number: L1421763 **Report Date:** 09/26/14

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Information

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1421763-01A	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-01B	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-01C	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-01D	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-01E	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-02A	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-02B	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-02C	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-02D	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-02E	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-03A	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-03B	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-03C	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-03D	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-03E	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-04A	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-04B	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-04C	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-04D	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-04E	Amber 1000ml HCl preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-05A	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-05B	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-05C	Vial HCI preserved	А	N/A	2.9	Y	Absent	VPH-DELUX-10(14)
L1421763-05D	Amber 1000ml HCI preserved	А	<2	2.9	Y	Absent	EPH-10(14)
L1421763-05E	Amber 1000ml HCI preserved	А	<2	2.9	Y	Absent	EPH-10(14)

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421763

Report Date: 09/26/14

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

Report Format: Data Usability Report

Project Name: MINUTEMAN H.S.

Project Number: 101.01007.002

Lab Number: L1421763 Report Date: 09/26/14

Data Qualifiers

- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: MINUTEMAN H.S. Project Number: 101.01007.002

Lab Number:	L1421763
Report Date:	09/26/14

REFERENCES

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 100 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

Last revised April 15, 2014

The following analytes are not included in our NELAP Scope of Accreditation:

Westborough Facility

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether.
EPA 8260C: 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene, Iodomethane (methyl iodide), Methyl methacrylate, Azobenzene.
EPA 8330A/B: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT.
EPA 8270D: 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 625: 4-Chloroaniline, 4-Methylphenol.
SM4500: Soil: Total Phosphorus, TKN, NO2, NO3.
EPA 9071: Total Petroleum Hydrocarbons, Oil & Grease.

Mansfield Facility

EPA 8270D: Biphenyl. **EPA 2540D:** TSS **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

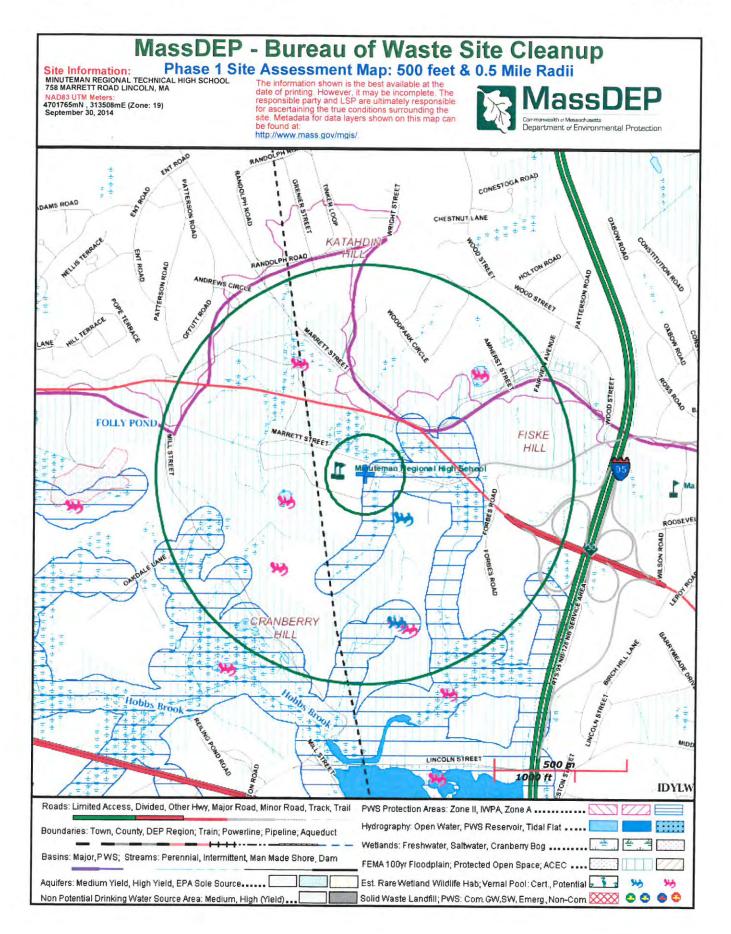
Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil. **Microbiology**: **SM9223B-Colilert-QT**; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.


								1 a 16 1.0001									Seri	<u>al_N</u>	<u>lo:09261412:26</u>	
	CHA	IN OF		STO	DY ,	PAGE	_OF	Date R	ec'd în l	Lab:	9-1	8-	4		AL	.PH/	٩Jo	Ь <i>#</i> :	4421763	
8 Walkup Drive	320 Forbes Blvd		Project	t Informat	ion			Repo	t Infor	matio	n - Da	ta De	livera	oles		illing				
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 0	2048	Project I	Name: Min	intern (m H	-5-	(Ż p adi	Ξx	R	EMAII	-			₩2	Same	as Cl	lient ir	nfo PO #: 7066	
Client Informatio)n		Project l	_ocation: 7	54 Mr.	$1 \times 1/1 0$		Regul	atory F	Requi	emen	ts &	& Pro	oject I					rements	
Client: Rooser	1 Consultar	N 68	Project #	#: lolo	21007.C		470-07		No M										T RCP Analytical Metho	ods
Address: 17	1 Loci C				<u>/////////////////////////////////////</u>		- 1	 Yes Store Matrix Spike Required on this SDG? (Required for MCP Inorganics) Yes Store No. GW1 Standards (Info Required for Metals & EPH with Targets) 												
R. Carl N	nt Way, Su IA DI922	rik 100		Manager: 1	enther	Milley-	Thtmen													
Phone: 978-1	115-1022							UOthe	r State /				/	F 1		(Criteri /	ia /		
	<u>+65 -1822</u>			Around Tir	ne				/ /	' /	8 / a			· /·		/	/	/		
- nam ndudle	yeronsome	nvicon	🛛 Stan	dard 🗆	RUSH (only	confirmed if pre-ep	eprovedi)	5		1	5/0	ges (les 0	/=	/		/ /	/ /		
Additional P	roject Informati	ion	Date I	Due: 9-2	6-14			5	D 524,2 9H	44	8	PRan	Ram	Di		" .		/		T O T
Additional	roject mormat		·							DMCP 14	280	9 / 1 9		L Fingerprint			/		SAMPLE INFO) L
							÷.,		s/ ¤/	٤/.	Taro		1.		/		/	/ /	/ / Filtration / 🖸 Field	#
								60	D ABN		88 88	les &	ES A	7		/ /	/	' /	Lab to do	в
								0.8260	METALS: DABN	METALS: URCP 13 UMCP 14	EPH: LIRANGES & TATOR LIRCRAS	Ram	TPH: LOUIAND		' /				Preservation Lab to do	T
ALPHA Lab ID (Lab Use Only)	Sam	nple ID			ection	Sample	Sampler	NOC:			<u>,</u>		, '	/ /			/	/		Ē
10.100002-000000-000-000-000-000-000-000-00		• <u> </u>		Date	Time	Matrix	Initials		/₹/			14	/ ~ /	/		<u>/</u>			Sample Comments	s S
21763-01	MW102-W1-			9/17/14		GW	DAMES	v	ļ	_ `	<u>(</u>				_					5_
02, -	MW103-W1-	091714		9/17/14	1525	GW	KEW			k	$ \chi $									5
	MWI04-WI-			9/17/14	1641	GW	DFM			İλ	X	· ·								5
્ભ	MW105-W1-			ñ/17/14		Gw	DAM			λ										5
05	MWIDE-WI-			· · ·							- w/									5
<u> </u>	1. (w 100 _ w 1-		<u> </u>	91/17/14	131L	GW	Dirykim	✓		$ \rangle$										<u> </u>
									<u> </u>						<u> </u>					
								· ·												
													:			.				
Container Type	Preservative					Conta	iner Type			F										-
P= Plastic A≂ Amber glass V= Vial	A≕ None B= HC! C= HNO₃						eservative		+	<u> </u>		+			+					
G= Glass B= Bacteria cup C= Cube	D≂ H₂SQ₄ E= NeOH F= MeOH	<u> </u>	Relina	uished By:	1	Date/Time								 Date	e/Time	<u>_</u>				
O= Other E≂ Encore	G≕ NaHSO₄ H = Na₂S₂O₃	I'me -	J Mm 9 Mgg 2 2			9/17/14 1335		Received By:				L 1		All samples submitted an			les submitted are subje ferms and Conditions.	ct to		
D≃ BOD Bottle	I= Ascorbic Acid J = NH₄CI K= Zn Acetate					9/18/	2/18/14 1710						-	-18 -1	- 13	Lio_	Pro- 2	51-2 CP (1975)	rse side.	
	O= Other)									FORM NO: 01-01 (rev. 12-Mar-2012)			

_

ATTACHMENT E

Massachusetts Geographic Information System (MassGIS) Map

Phase II Limited Subsurface Investigation Minuteman Regional Technical High School 758 Marrett Road Lexington and Lincoln, Massachusetts

